找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphisms in Birational and Affine Geometry; Levico Terme, Italy, Ivan Cheltsov,Ciro Ciliberto,Mikhail Zaidenberg Conference proceeding

[復(fù)制鏈接]
樓主: 惡化
11#
發(fā)表于 2025-3-23 12:33:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:34:59 | 只看該作者
Au(III) Series with ,C,N and ,N,N′ LigandsWe survey some results on the nonrationality and birational rigidity of certain hypersurfaces of Fano type. The focus is on hypersurfaces of Fano index one, but hypersurfaces of higher index are also discussed.
13#
發(fā)表于 2025-3-23 21:39:32 | 只看該作者
Probing Gold: X-Ray Absorption SpectroscopyWe show that the Zariski closure of the set of hypersurfaces of degree . in ., where . ≥ 5, which are either not factorial or not birationally superrigid, is of codimension at least . in the parameter space.
14#
發(fā)表于 2025-3-23 23:23:56 | 只看該作者
https://doi.org/10.1057/9781137471369This is a survey of some results on the structure and classification of normal analytic compactifications of .. Mirroring the existing literature, we especially emphasize the compactifications for which the curve at infinity is irreducible.
15#
發(fā)表于 2025-3-24 04:45:05 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:15 | 只看該作者
17#
發(fā)表于 2025-3-24 13:35:16 | 只看該作者
https://doi.org/10.1007/978-3-319-06707-0Let . be an algebraically closed field of characteristic zero. Given a polynomial . with one place at infinity, we prove that either . is equivalent to a coordinate, or the family . has at most two rational elements. When . has two rational elements, we give a description of the singularities of these two elements.
18#
發(fā)表于 2025-3-24 16:32:21 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:17 | 只看該作者
Del Pezzo Surfaces and Local InequalitiesI prove new local inequality for divisors on smooth surfaces, describe its applications, and compare it to a similar local inequality that is already known by experts.
20#
發(fā)表于 2025-3-24 23:50:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昆山市| 延川县| 青阳县| 海南省| 聊城市| 阜宁县| 商洛市| 临清市| 南漳县| 甘德县| 错那县| 禄劝| 吉安市| 广安市| 东乡县| 万州区| 抚松县| 鲁甸县| 新巴尔虎右旗| 云梦县| 天柱县| 壶关县| 济南市| 即墨市| 资溪县| 鄄城县| 舒城县| 克东县| 扎鲁特旗| 登封市| 鞍山市| 扶余县| 民和| 淳化县| 都江堰市| 萨嘎县| 鄂伦春自治旗| 临高县| 嫩江县| 稻城县| 宿松县|