找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphisms in Birational and Affine Geometry; Levico Terme, Italy, Ivan Cheltsov,Ciro Ciliberto,Mikhail Zaidenberg Conference proceeding

[復制鏈接]
樓主: 惡化
11#
發(fā)表于 2025-3-23 12:33:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:34:59 | 只看該作者
Au(III) Series with ,C,N and ,N,N′ LigandsWe survey some results on the nonrationality and birational rigidity of certain hypersurfaces of Fano type. The focus is on hypersurfaces of Fano index one, but hypersurfaces of higher index are also discussed.
13#
發(fā)表于 2025-3-23 21:39:32 | 只看該作者
Probing Gold: X-Ray Absorption SpectroscopyWe show that the Zariski closure of the set of hypersurfaces of degree . in ., where . ≥ 5, which are either not factorial or not birationally superrigid, is of codimension at least . in the parameter space.
14#
發(fā)表于 2025-3-23 23:23:56 | 只看該作者
https://doi.org/10.1057/9781137471369This is a survey of some results on the structure and classification of normal analytic compactifications of .. Mirroring the existing literature, we especially emphasize the compactifications for which the curve at infinity is irreducible.
15#
發(fā)表于 2025-3-24 04:45:05 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:15 | 只看該作者
17#
發(fā)表于 2025-3-24 13:35:16 | 只看該作者
https://doi.org/10.1007/978-3-319-06707-0Let . be an algebraically closed field of characteristic zero. Given a polynomial . with one place at infinity, we prove that either . is equivalent to a coordinate, or the family . has at most two rational elements. When . has two rational elements, we give a description of the singularities of these two elements.
18#
發(fā)表于 2025-3-24 16:32:21 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:17 | 只看該作者
Del Pezzo Surfaces and Local InequalitiesI prove new local inequality for divisors on smooth surfaces, describe its applications, and compare it to a similar local inequality that is already known by experts.
20#
發(fā)表于 2025-3-24 23:50:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
绥德县| 溧阳市| 富蕴县| 伊春市| 武清区| 凌云县| 怀柔区| 攀枝花市| 扎囊县| 大英县| 南阳市| 噶尔县| 文安县| 凤山市| 武隆县| 定远县| 修武县| 阜平县| 彭山县| 康定县| 南投县| 大庆市| 年辖:市辖区| 灵武市| 黔江区| 车险| 南川市| 安福县| 甘孜| 新乐市| 安陆市| 西峡县| 新邵县| 军事| 邯郸县| 绿春县| 雷波县| 鄂托克旗| 天全县| 周宁县| 八宿县|