找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Pseudodifferential Analysis and Higher Level Weyl Calculi; André Unterberger Book 2003 Springer Basel AG 2003 Calc.DEX.Dirac.M

[復(fù)制鏈接]
樓主: 支票
11#
發(fā)表于 2025-3-23 10:47:44 | 只看該作者
Automorphic Distributions and the Weyl Calculus,The defining formula of the Weyl calculus [68] is
12#
發(fā)表于 2025-3-23 15:52:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:06:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:11:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:45:04 | 只看該作者
Introduction,y - ., up to a negligible set - one point in each Γ-orbit. A . is an automorphic function on Π which is at the same time a generalized eigenfunction of the Laplace-Beltrami operator Δ for some eigenvalue ..
16#
發(fā)表于 2025-3-24 06:42:03 | 只看該作者
Joseph M. Siracusa,Laurens J. Vissery - ., up to a negligible set - one point in each Γ-orbit. A . is an automorphic function on Π which is at the same time a generalized eigenfunction of the Laplace-Beltrami operator Δ for some eigenvalue ..
17#
發(fā)表于 2025-3-24 10:52:46 | 只看該作者
18#
發(fā)表于 2025-3-24 17:49:52 | 只看該作者
Gold Clusters, Colloids and Nanoparticles IIent. Last, let us indicate that, as has been proved by Bechata [5], the present formula extends to the p-adic Weyl calculus (dealing with complex-valued functions on p-adic numbers), while, again, the Moyal-type formula would be meaningless.
19#
發(fā)表于 2025-3-24 19:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:00:54 | 只看該作者
Further Perspectives,ent. Last, let us indicate that, as has been proved by Bechata [5], the present formula extends to the p-adic Weyl calculus (dealing with complex-valued functions on p-adic numbers), while, again, the Moyal-type formula would be meaningless.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 18:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍林郭勒市| 育儿| 昌图县| 贞丰县| 镇沅| 大田县| 景德镇市| 穆棱市| 芦溪县| 承德县| 格尔木市| 镶黄旗| 阿拉尔市| 綦江县| 灵璧县| 沙湾县| 临海市| 那曲县| 漠河县| 临桂县| 阿拉尔市| 北川| 商河县| 荔浦县| 开远市| 宁波市| 清丰县| 新干县| 南安市| 偃师市| 芦溪县| 牙克石市| 彰化市| 康定县| 建平县| 大竹县| 巴南区| 桂林市| 饶河县| 沙湾县| 岳西县|