找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Pseudodifferential Analysis and Higher Level Weyl Calculi; André Unterberger Book 2003 Springer Basel AG 2003 Calc.DEX.Dirac.M

[復(fù)制鏈接]
樓主: 支票
11#
發(fā)表于 2025-3-23 10:47:44 | 只看該作者
Automorphic Distributions and the Weyl Calculus,The defining formula of the Weyl calculus [68] is
12#
發(fā)表于 2025-3-23 15:52:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:06:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:11:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:45:04 | 只看該作者
Introduction,y - ., up to a negligible set - one point in each Γ-orbit. A . is an automorphic function on Π which is at the same time a generalized eigenfunction of the Laplace-Beltrami operator Δ for some eigenvalue ..
16#
發(fā)表于 2025-3-24 06:42:03 | 只看該作者
Joseph M. Siracusa,Laurens J. Vissery - ., up to a negligible set - one point in each Γ-orbit. A . is an automorphic function on Π which is at the same time a generalized eigenfunction of the Laplace-Beltrami operator Δ for some eigenvalue ..
17#
發(fā)表于 2025-3-24 10:52:46 | 只看該作者
18#
發(fā)表于 2025-3-24 17:49:52 | 只看該作者
Gold Clusters, Colloids and Nanoparticles IIent. Last, let us indicate that, as has been proved by Bechata [5], the present formula extends to the p-adic Weyl calculus (dealing with complex-valued functions on p-adic numbers), while, again, the Moyal-type formula would be meaningless.
19#
發(fā)表于 2025-3-24 19:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:00:54 | 只看該作者
Further Perspectives,ent. Last, let us indicate that, as has been proved by Bechata [5], the present formula extends to the p-adic Weyl calculus (dealing with complex-valued functions on p-adic numbers), while, again, the Moyal-type formula would be meaningless.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 07:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德兴市| 喜德县| 依兰县| 温州市| 罗源县| 吉安县| 松桃| 宕昌县| 海伦市| 漯河市| 辉南县| 万源市| 宕昌县| 苍梧县| 宕昌县| 岑溪市| 瓮安县| 秭归县| 苍山县| 信阳市| 平遥县| 曲靖市| 榆社县| 诸城市| 屯门区| 吉木萨尔县| 道孚县| 汕头市| 湛江市| 简阳市| 安溪县| 长顺县| 漯河市| 文水县| 太仆寺旗| 安吉县| 贵德县| 巫溪县| 梨树县| 安阳县| 怀集县|