找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms; Research in Number T Bernhard Heim,Mehiddin Al-Baali,Florian Rupp Conference proceedings 2014 Springer International Pub

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:14:46 | 只看該作者
Intersections of Two Walls of the Gottschling Fundamental Domain of the Siegel Modular Group of GenIf one has a chance to see the classical books of Fricke-Klein on modular functions of one variable, which were written one hundred years ago, one can find many beautiful pictures of fundamental domains bounded by geodesic lines with respect to the invariant hyperbolic metric in the complex upper half plane ..
52#
發(fā)表于 2025-3-30 12:51:54 | 只看該作者
Nonvanishing of ,-Functions Associated to Cusp Forms of Half-Integral Weight,In this article, we prove nonvanishing results for .-functions associated to holomorphic cusp forms of half-integral weight on average (over an orthogonal basis of Hecke eigenforms). This extends a result of W. Kohnen [4] to forms of half-integral weight.
53#
發(fā)表于 2025-3-30 19:24:39 | 只看該作者
54#
發(fā)表于 2025-3-30 20:42:15 | 只看該作者
55#
發(fā)表于 2025-3-31 02:48:18 | 只看該作者
2194-1009 at German University of Technology in Oman in February 2012..This edited volume presents a collection of carefully refereed articles covering the latest advances in Automorphic Forms and Number Theory, that were primarily developed from presentations given at the 2012 “International Conference on Au
56#
發(fā)表于 2025-3-31 07:10:51 | 只看該作者
Fuzzy Controllers In Goguen Categories,d a generalization of parts of Bruinier’s result. We obtain recursion formulas for the Fourier-Jacobi coefficients of a Borcherds lift. Hence we have a direct link between Fourier-Jacobi coefficients and divisors.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
自治县| 康平县| 沐川县| 宜都市| 三门县| 政和县| 漯河市| 霸州市| 夏河县| 抚州市| 大丰市| 陈巴尔虎旗| 莲花县| 汕头市| 高尔夫| 台中县| 禄丰县| 登封市| 怀宁县| 读书| 泸溪县| 铁力市| 弥勒县| 郴州市| 如皋市| 安泽县| 博兴县| 连南| 廉江市| 威远县| 万荣县| 贵港市| 平乡县| 靖边县| 许昌市| 扎囊县| 大城县| 百色市| 始兴县| 洪湖市| 沂南县|