找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms; Research in Number T Bernhard Heim,Mehiddin Al-Baali,Florian Rupp Conference proceedings 2014 Springer International Pub

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:07:03 | 只看該作者
32#
發(fā)表于 2025-3-27 02:14:39 | 只看該作者
https://doi.org/10.1007/978-3-319-11352-4Borcherds Products; Discontinuous Groups and Automorphic Forms; Jacobi Forms; Number Theory; Siegel and
33#
發(fā)表于 2025-3-27 07:09:35 | 只看該作者
34#
發(fā)表于 2025-3-27 10:11:45 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:44 | 只看該作者
36#
發(fā)表于 2025-3-27 21:40:45 | 只看該作者
37#
發(fā)表于 2025-3-28 00:23:45 | 只看該作者
https://doi.org/10.1007/978-1-4020-6164-6special cases .?=?.. and .. In this case we can show that the pullback is an embedding and we study the dependency on the choice of .. Combining this with earlier results of Krieg, we can define a family of index-raising operators ..?→?.. for all ., which interpolate the operators . defined by Eichler and Zagier.
38#
發(fā)表于 2025-3-28 03:21:31 | 只看該作者
39#
發(fā)表于 2025-3-28 09:59:05 | 只看該作者
https://doi.org/10.1007/978-1-4020-8893-3n result is an explicit relation between a Bessel period of some theta lift to the indefinite symplectic group .(1, 1) and the central value of an .-function of convolution type for the lift (cf. Theorem 3.2).
40#
發(fā)表于 2025-3-28 13:30:03 | 只看該作者
Fuzzy Controllers In Goguen Categories,We give some conditions for polynomial systems of integer congruences to have infinitely or finitely many solutions in positive integers. Some of these conditions use the degrees of the polynomial, while others are more specific cases for certain special polynomials, mainly quadratic or cubic.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威海市| 昆明市| 栾城县| 灵石县| 铜山县| 灵武市| 兴文县| 香格里拉县| 明溪县| 普陀区| 英德市| 酉阳| 锦屏县| 响水县| 屏东市| 荥经县| 宜章县| 仙桃市| 铁岭县| 阿瓦提县| 琼海市| 西平县| 木兰县| 察隅县| 邵阳县| 长白| 盐亭县| 克东县| 方正县| 龙游县| 汝城县| 竹溪县| 博爱县| 蕉岭县| 台北县| 濉溪县| 阳曲县| 安宁市| 肇庆市| 缙云县| 藁城市|