找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automatic Tuning of Compilers Using Machine Learning; Amir H. Ashouri,Gianluca Palermo,Cristina Silvano Book 2018 The Author(s) 2018 Embed

[復(fù)制鏈接]
查看: 40934|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:51:04 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Automatic Tuning of Compilers Using Machine Learning
影響因子2023Amir H. Ashouri,Gianluca Palermo,Cristina Silvano
視頻videohttp://file.papertrans.cn/167/166458/166458.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Automatic Tuning of Compilers Using Machine Learning;  Amir H. Ashouri,Gianluca Palermo,Cristina Silvano Book 2018 The Author(s) 2018 Embed
影響因子.This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers..
Pindex Book 2018
The information of publication is updating

書目名稱Automatic Tuning of Compilers Using Machine Learning影響因子(影響力)




書目名稱Automatic Tuning of Compilers Using Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Automatic Tuning of Compilers Using Machine Learning網(wǎng)絡(luò)公開度




書目名稱Automatic Tuning of Compilers Using Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Automatic Tuning of Compilers Using Machine Learning被引頻次




書目名稱Automatic Tuning of Compilers Using Machine Learning被引頻次學(xué)科排名




書目名稱Automatic Tuning of Compilers Using Machine Learning年度引用




書目名稱Automatic Tuning of Compilers Using Machine Learning年度引用學(xué)科排名




書目名稱Automatic Tuning of Compilers Using Machine Learning讀者反饋




書目名稱Automatic Tuning of Compilers Using Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:11:43 | 只看該作者
Design Space Exploration of Compiler Passes: A Co-Exploration Approach for the Embedded Domain,duced hardware complexity. However, they impose higher compiler complexity since the instructions are executed in parallel based on the static compiler schedule. Therefore, finding a promising set of compiler transformations and defining their effects have a significant impact on the overall system
板凳
發(fā)表于 2025-3-22 03:29:24 | 只看該作者
Selecting the Best Compiler Optimizations: A Bayesian Network Approach,best compiler passes. It leverages machine learning and an application characterization to find the most promising optimization passes given an application. This chapter proposes .: Compiler autotuning framework using Bayesian Networks. An autotuning methodology based on machine learning to speed up
地板
發(fā)表于 2025-3-22 06:04:29 | 只看該作者
The Phase-Ordering Problem: An Intermediate Speedup Prediction Approach,p prediction approach followed by a full-sequence prediction approach in the next chapter and we show pros and cons of each approach in detail. Today’s compilers offer a vast number of transformation options to choose among, and this choice can significantly impact on the performance of the code bei
5#
發(fā)表于 2025-3-22 09:18:02 | 只看該作者
The Phase-Ordering Problem: A Complete Sequence Prediction Approach,.. Here, we present our full-sequence speedup prediction method called MiCOMP.MiCOMP: .tigating the .piler .hase-ordering problem using optimization sub-sequences and machine learning, is an autotuning framework to mitigate the compiler phase-ordering problem based on machine-learning techniques eff
6#
發(fā)表于 2025-3-22 15:18:01 | 只看該作者
7#
發(fā)表于 2025-3-22 20:10:56 | 只看該作者
8#
發(fā)表于 2025-3-23 00:18:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:34:35 | 只看該作者
10#
發(fā)表于 2025-3-23 05:31:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐至县| 鄯善县| 义马市| 泰州市| 河南省| 新田县| 繁峙县| 忻州市| 株洲市| 彭泽县| 凯里市| 开平市| 始兴县| 通海县| 莆田市| 札达县| 高雄市| 堆龙德庆县| 鄂托克旗| 平顺县| 定边县| 九龙县| 南投县| 黑龙江省| 泸水县| 凤阳县| 泾阳县| 黄浦区| 开化县| 格尔木市| 德州市| 五台县| 特克斯县| 镶黄旗| 绥滨县| 瑞丽市| 张掖市| 东阿县| 五寨县| 五寨县| 象山县|