找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automatic Nonuniform Random Variate Generation; Wolfgang H?rmann,Josef Leydold,Gerhard Derflinger Book 2004 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 11:43:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:55 | 只看該作者
13#
發(fā)表于 2025-3-23 20:52:08 | 只看該作者
14#
發(fā)表于 2025-3-23 23:28:52 | 只看該作者
Markov Chain Monte Carlo Methodspractical point of view limited to small dimensions up to at most 10. And there are lots of distributions that are even difficult to sample from in dimension three or four. A totally different approach is based on the fact that we always can easily construct a Markov chain that has the desired fixed
15#
發(fā)表于 2025-3-24 03:33:16 | 只看該作者
16#
發(fā)表于 2025-3-24 06:42:35 | 只看該作者
Introductionible” of random variate generation. We can certainly say that random variate generation has become an accepted research area considered as a subarea of statistical computing and simulation methodology. Practically all text-books on discrete event simulation or Monte Carlo methods include at least on
17#
發(fā)表于 2025-3-24 12:19:24 | 只看該作者
Transformed Density Rejection (TDR) has been published by Gilks and Wild (1992) under the name .. The use of a general transformation and the name . was suggested by H?rmann (1995). In this presentation we try to develop the idea such that the reader can also see the (in our opinion) “beautiful” mathematical background (Sects. 4.2–4.
18#
發(fā)表于 2025-3-24 16:15:59 | 只看該作者
19#
發(fā)表于 2025-3-24 22:35:22 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:33 | 只看該作者
Li-Shih Huang,Raj Khatri,Amjad Alhemaidor random vector generation. For many of these families the marginals are known as well. The monograph of Johnson (1987) is presenting this branch of multivariate simulation. You can also find many of these distributions in Devroye (1986a, Chap. XI).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新化县| 安陆市| 弋阳县| 荆州市| 华蓥市| 成都市| 伊吾县| 邹城市| 禹州市| 翁牛特旗| 河曲县| 铜鼓县| 佛学| 襄樊市| 新昌县| 阳泉市| 合水县| 铁岭县| 伊春市| 麟游县| 忻城县| 客服| 鸡东县| 益阳市| 奇台县| 台州市| 泾川县| 休宁县| 新化县| 钟祥市| 天长市| 古交市| 博湖县| 临夏县| 兴山县| 安阳县| 孟连| 永福县| 双江| 鸡东县| 剑阁县|