找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automatic Nonuniform Random Variate Generation; Wolfgang H?rmann,Josef Leydold,Gerhard Derflinger Book 2004 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 11:43:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:55 | 只看該作者
13#
發(fā)表于 2025-3-23 20:52:08 | 只看該作者
14#
發(fā)表于 2025-3-23 23:28:52 | 只看該作者
Markov Chain Monte Carlo Methodspractical point of view limited to small dimensions up to at most 10. And there are lots of distributions that are even difficult to sample from in dimension three or four. A totally different approach is based on the fact that we always can easily construct a Markov chain that has the desired fixed
15#
發(fā)表于 2025-3-24 03:33:16 | 只看該作者
16#
發(fā)表于 2025-3-24 06:42:35 | 只看該作者
Introductionible” of random variate generation. We can certainly say that random variate generation has become an accepted research area considered as a subarea of statistical computing and simulation methodology. Practically all text-books on discrete event simulation or Monte Carlo methods include at least on
17#
發(fā)表于 2025-3-24 12:19:24 | 只看該作者
Transformed Density Rejection (TDR) has been published by Gilks and Wild (1992) under the name .. The use of a general transformation and the name . was suggested by H?rmann (1995). In this presentation we try to develop the idea such that the reader can also see the (in our opinion) “beautiful” mathematical background (Sects. 4.2–4.
18#
發(fā)表于 2025-3-24 16:15:59 | 只看該作者
19#
發(fā)表于 2025-3-24 22:35:22 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:33 | 只看該作者
Li-Shih Huang,Raj Khatri,Amjad Alhemaidor random vector generation. For many of these families the marginals are known as well. The monograph of Johnson (1987) is presenting this branch of multivariate simulation. You can also find many of these distributions in Devroye (1986a, Chap. XI).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大关县| 酉阳| 吉安市| 淮北市| 鄂伦春自治旗| 名山县| 泰来县| 浮梁县| 新乡市| 榆林市| 福清市| 堆龙德庆县| 潮州市| 苍溪县| 酉阳| 大同县| 龙南县| 那曲县| 托克托县| 蒲江县| 柏乡县| 仲巴县| 嘉定区| 罗山县| 精河县| 昌江| 丹寨县| 萨迦县| 西安市| 武胜县| 惠来县| 长葛市| 新干县| 藁城市| 运城市| 调兵山市| 方正县| 黔南| 吴旗县| 九龙坡区| 屏边|