找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automatic Control, Robotics, and Information Processing; Piotr Kulczycki,Józef Korbicz,Janusz Kacprzyk Book 2021 The Editor(s) (if applica

[復(fù)制鏈接]
樓主: INFER
31#
發(fā)表于 2025-3-27 00:27:04 | 只看該作者
H. R. Zurbrügg,M. Wied,R. Hetzerector field orientation method. All the presented algorithms have been extended by the authors with a collision avoidance mechanism based on the artificial potentials functions. For each of them, stability analysis was conducted using Lyapunov method. Both stability analysis and numerical verificati
32#
發(fā)表于 2025-3-27 01:56:45 | 只看該作者
Piotr Kulczycki,Józef Korbicz,Janusz KacprzykDevelops more effective and efficient tools and techniques for dealing with complex processes and systems.Presents a wide and comprehensive range of issues and problems in Automatic Control, Robotics,
33#
發(fā)表于 2025-3-27 05:49:00 | 只看該作者
34#
發(fā)表于 2025-3-27 13:31:26 | 只看該作者
35#
發(fā)表于 2025-3-27 14:49:00 | 只看該作者
978-3-030-48589-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
36#
發(fā)表于 2025-3-27 19:50:57 | 只看該作者
Book 2021ed perspectives. The desire to develop more effective and efficient tools and techniques for dealing with complex processes and systems has been a natural inspiration for the emergence of numerous fields of science and technology, in particular control and automation and, more recently, robotics. Th
37#
發(fā)表于 2025-3-27 22:40:50 | 只看該作者
38#
發(fā)表于 2025-3-28 04:28:05 | 只看該作者
39#
發(fā)表于 2025-3-28 07:11:13 | 只看該作者
Positive Linear Control Systemse given. The Kharitonov theorem is extended to positive linear systems with interval state matrices. The notions of the convex combinations of Hurwitz polynomials and Schur polynomials and of the state matrices are introduced. The considerations are illustrated by numerical examples of positive linear continuous-time and discrete-time systems.
40#
發(fā)表于 2025-3-28 12:28:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合肥市| 丹棱县| 鹤庆县| 屯门区| 阿拉善右旗| 和林格尔县| 布尔津县| 共和县| 庆安县| 毕节市| 平定县| 会昌县| 朝阳区| 枣阳市| 泰顺县| 望江县| 平和县| 诸暨市| 桓仁| 琼结县| 夏河县| 曲水县| 工布江达县| 九台市| 博爱县| 井冈山市| 潢川县| 虹口区| 怀仁县| 鄯善县| 德钦县| 屏东县| 五莲县| 广灵县| 桓台县| 增城市| 油尖旺区| 汉沽区| 常山县| 资中县| 图木舒克市|