找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Reasoning; 10th International J Nicolas Peltier,Viorica Sofronie-Stokkermans Conference proceedings 2020 Springer Nature Switzerl

[復制鏈接]
樓主: Deleterious
11#
發(fā)表于 2025-3-23 11:23:56 | 只看該作者
Combined Covers and Beth Definabilitynted out in the literature. A successive parallel research line inside the automated reasoning community investigated uniform quantifier-free interpolants (sometimes referred to as “covers”) in first-order theories. In this paper, we investigate cover transfer to theory combinations in the disjoint
12#
發(fā)表于 2025-3-23 14:27:38 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:57 | 只看該作者
14#
發(fā)表于 2025-3-24 00:43:34 | 只看該作者
15#
發(fā)表于 2025-3-24 05:59:44 | 只看該作者
A Knuth-Bendix-Like Ordering for Orienting Combinator Equationse resultant ordering is highly suited to parameterising the first-order superposition calculus when dealing with the theory of higher-order logic, as it prevents inferences between the combinator axioms. We prove a number of desirable properties about the ordering including it having the subterm pro
16#
發(fā)表于 2025-3-24 08:57:39 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:22 | 只看該作者
18#
發(fā)表于 2025-3-24 17:38:38 | 只看該作者
19#
發(fā)表于 2025-3-24 20:39:43 | 只看該作者
The Resolution of Keller’s Conjecturesult implies that every unit cube tiling of . contains a facesharing pair of cubes. Since a faceshare-free unit cube tiling of . exists (which we also verify), this completely resolves Keller’s conjecture.
20#
發(fā)表于 2025-3-25 00:57:25 | 只看該作者
How QBF Expansion Makes Strategy Extraction Hardtraction, we find this is conditional on a property studied in proof complexity theory. We show that strategy extraction on expansion based systems can only happen when the underlying propositional calculus has the property of feasible interpolation.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 14:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盐城市| 禄劝| 青岛市| 奉贤区| 黎城县| 安龙县| 高密市| 托克逊县| 章丘市| 平顶山市| 洪雅县| 乌拉特前旗| 玉门市| 双桥区| 尼木县| 大埔县| 亚东县| 长沙市| 上栗县| 和顺县| 杭州市| 金平| 崇阳县| 河北区| 黄陵县| 天全县| 海门市| 仲巴县| 三门县| 天柱县| 林口县| 马山县| 高碑店市| 泰安市| 准格尔旗| 邳州市| 聊城市| 抚宁县| 京山县| 饶平县| 会东县|