找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Deduction in Geometry; 8th International Wo Pascal Schreck,Julien Narboux,Jürgen Richter-Geber Conference proceedings 2011 Spring

[復(fù)制鏈接]
樓主: GLOAT
31#
發(fā)表于 2025-3-27 00:16:57 | 只看該作者
32#
發(fā)表于 2025-3-27 01:39:16 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:34 | 只看該作者
34#
發(fā)表于 2025-3-27 11:50:34 | 只看該作者
What Is a Line ?,try creates new geometric objects (circles or conics) which can also be considered as (level 1) lines, in the sense that they fulfil Pappus axioms for lines. But Pappus theory also applies to these new lines. A formalization of Pappus geometry should enable to automatize these generalizations of lin
35#
發(fā)表于 2025-3-27 16:11:51 | 只看該作者
36#
發(fā)表于 2025-3-27 18:45:46 | 只看該作者
Thousands of Geometric Problems for Geometric Theorem Provers (TGTP), . is to create an appropriate context for testing and evaluating geometric automated theorem proving systems (GATP). For that purpose . provides a centralised common library of geometric problems with an already significant size but aiming to became large enough to ensure meaningful system evaluati
37#
發(fā)表于 2025-3-28 01:08:24 | 只看該作者
38#
發(fā)表于 2025-3-28 06:07:59 | 只看該作者
A Coherent Logic Based Geometry Theorem Prover Capable of Producing Formal and Readable Proofs,rious theories, primarily geometry. We applied the prover to various axiomatic systems and proved tens of theorems from standard university textbooks on geometry. The generated proofs can be used in different educational purposes and can contribute to the growing body of formalized mathematics. The
39#
發(fā)表于 2025-3-28 08:04:42 | 只看該作者
40#
發(fā)表于 2025-3-28 11:18:19 | 只看該作者
Exploring the Foundations of Discrete Analytical Geometry in Isabelle/HOL,lly prove that the algorithmic approximation produced can be made to be infinitely-close to its continuous counterpart. This enables the discretization of continuous functions and of geometric concepts such as the straight line and ellipse and acts as the starting point for the field of discrete analytical geometry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青河县| 霍林郭勒市| 台东市| 广南县| 财经| 怀柔区| 萍乡市| 金阳县| 将乐县| 和田县| 辽宁省| 沅陵县| 梨树县| 清远市| 和林格尔县| 合肥市| 东源县| 襄汾县| 永修县| 巴彦县| 中方县| 云浮市| 曲沃县| 元氏县| 霍州市| 大石桥市| 临沭县| 祁连县| 香港 | 北海市| 武夷山市| 广安市| 稷山县| 高邑县| 饶阳县| 和龙市| 闸北区| 吴江市| 通化县| 镇巴县| 冕宁县|