找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Deduction in Geometry; 8th International Wo Pascal Schreck,Julien Narboux,Jürgen Richter-Geber Conference proceedings 2011 Spring

[復(fù)制鏈接]
樓主: GLOAT
31#
發(fā)表于 2025-3-27 00:16:57 | 只看該作者
32#
發(fā)表于 2025-3-27 01:39:16 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:34 | 只看該作者
34#
發(fā)表于 2025-3-27 11:50:34 | 只看該作者
What Is a Line ?,try creates new geometric objects (circles or conics) which can also be considered as (level 1) lines, in the sense that they fulfil Pappus axioms for lines. But Pappus theory also applies to these new lines. A formalization of Pappus geometry should enable to automatize these generalizations of lin
35#
發(fā)表于 2025-3-27 16:11:51 | 只看該作者
36#
發(fā)表于 2025-3-27 18:45:46 | 只看該作者
Thousands of Geometric Problems for Geometric Theorem Provers (TGTP), . is to create an appropriate context for testing and evaluating geometric automated theorem proving systems (GATP). For that purpose . provides a centralised common library of geometric problems with an already significant size but aiming to became large enough to ensure meaningful system evaluati
37#
發(fā)表于 2025-3-28 01:08:24 | 只看該作者
38#
發(fā)表于 2025-3-28 06:07:59 | 只看該作者
A Coherent Logic Based Geometry Theorem Prover Capable of Producing Formal and Readable Proofs,rious theories, primarily geometry. We applied the prover to various axiomatic systems and proved tens of theorems from standard university textbooks on geometry. The generated proofs can be used in different educational purposes and can contribute to the growing body of formalized mathematics. The
39#
發(fā)表于 2025-3-28 08:04:42 | 只看該作者
40#
發(fā)表于 2025-3-28 11:18:19 | 只看該作者
Exploring the Foundations of Discrete Analytical Geometry in Isabelle/HOL,lly prove that the algorithmic approximation produced can be made to be infinitely-close to its continuous counterpart. This enables the discretization of continuous functions and of geometric concepts such as the straight line and ellipse and acts as the starting point for the field of discrete analytical geometry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 09:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成武县| 屯留县| 马公市| 桦南县| 平顺县| 巴马| 平武县| 呼和浩特市| 枣阳市| 湛江市| 宝鸡市| 谢通门县| 开远市| 澄江县| 韶山市| 长汀县| 辽阳市| 博乐市| 岳池县| 民县| 五原县| 渝北区| 江孜县| 韶山市| 安塞县| 莒南县| 绥芬河市| 阿荣旗| 威海市| 阿拉尔市| 新龙县| 洛隆县| 泰安市| 凤台县| 洪雅县| 尖扎县| 南汇区| 安远县| 德昌县| 江川县| 昂仁县|