找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata, Languages, and Programming; 39th International C Artur Czumaj,Kurt Mehlhorn,Roger Wattenhofer Conference proceedings 2012 Springe

[復(fù)制鏈接]
樓主: Definite
61#
發(fā)表于 2025-4-1 03:16:21 | 只看該作者
https://doi.org/10.1007/978-3-8350-5487-5for Basic CCS and Basic Process Algebra, as a means for defining synchronization trees up to isomorphism as well as modulo bisimilarity and language equivalence. The expressiveness of algebraic recursion schemes is also compared to that of the low levels in the Caucal hierarchy.
62#
發(fā)表于 2025-4-1 09:42:54 | 只看該作者
,Thesenf?rmige Zusammenfassung, up to a given error .?>?0 and computing a finite representation of an .-optimal strategy. We show that these problems are solvable in exponential time for a given configuration, and we also show that they are computationally hard in the sense that a polynomial-time approximation algorithm cannot exist unless P=NP.
63#
發(fā)表于 2025-4-1 11:13:29 | 只看該作者
Algebraic Synchronization Trees and Processesfor Basic CCS and Basic Process Algebra, as a means for defining synchronization trees up to isomorphism as well as modulo bisimilarity and language equivalence. The expressiveness of algebraic recursion schemes is also compared to that of the low levels in the Caucal hierarchy.
64#
發(fā)表于 2025-4-1 16:50:17 | 只看該作者
Minimizing Expected Termination Time in One-Counter Markov Decision Processes up to a given error .?>?0 and computing a finite representation of an .-optimal strategy. We show that these problems are solvable in exponential time for a given configuration, and we also show that they are computationally hard in the sense that a polynomial-time approximation algorithm cannot exist unless P=NP.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金湖县| 沂水县| 安宁市| 莱阳市| 桂阳县| 二连浩特市| 昌乐县| 凯里市| 容城县| 牟定县| 环江| 辽阳县| 登封市| 蒲江县| 凤庆县| 墨竹工卡县| 大城县| 高陵县| 郁南县| 瑞金市| 莒南县| 彭泽县| 安达市| 江都市| 大港区| 西峡县| 常宁市| 鄂伦春自治旗| 濮阳市| 宜兰县| 东阳市| 故城县| 淮滨县| 大名县| 陆丰市| 曲水县| 木兰县| 利津县| 聂拉木县| 庆安县| 青州市|