找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata, Languages, and Programming; 39th International C Artur Czumaj,Kurt Mehlhorn,Roger Wattenhofer Conference proceedings 2012 Springe

[復(fù)制鏈接]
樓主: GUST
11#
發(fā)表于 2025-3-23 12:30:32 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:17:07 | 只看該作者
Approximation Algorithms for Online Weighted Rank Function Maximization under Matroid Constraintsatroid is defined. The goal is to incrementally choose a subset that remains independent in the matroid over time. At each time, a new weighted rank function of a different matroid (one per time) over the same elements is presented; the algorithm can add a few elements to the incrementally construct
14#
發(fā)表于 2025-3-24 01:42:32 | 只看該作者
15#
發(fā)表于 2025-3-24 03:04:44 | 只看該作者
16#
發(fā)表于 2025-3-24 10:18:24 | 只看該作者
Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degree, if for any subset .???. with |.|?≤?., it holds that ..(., .)?≤?. ·.(., .), for any pair of ., .?∈?.???...For any doubling metric, we give a basic construction of .-VFTS with stretch arbitrarily close to 1 that has optimal .(.) edges. In addition, we also consider bounded hop-diameter, which is stu
17#
發(fā)表于 2025-3-24 13:55:58 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:03 | 只看該作者
19#
發(fā)表于 2025-3-24 19:07:20 | 只看該作者
20#
發(fā)表于 2025-3-25 02:10:01 | 只看該作者
Efficient Submodular Function Maximization under Linear Packing Constraints when the number of constraints is constant or when the width of the constraints is sufficiently large. This motivates us to study the large width setting, trying to determine its exact approximability. We develop an algorithm that has an approximation ratio of (1???.)(1???1/.) when .?=?Ω(ln . / ..)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沂南县| 琼结县| 枝江市| 阿克陶县| 杭锦后旗| 云南省| 托克逊县| 泗水县| 兴安盟| 库尔勒市| 文成县| 汝南县| 紫阳县| 威海市| 永州市| 平山县| 海门市| 合川市| 大埔区| 大城县| 漳州市| 罗定市| 故城县| 黔东| 鹤山市| 改则县| 司法| 乌兰浩特市| 诏安县| 菏泽市| 新余市| 南阳市| 嘉禾县| 凭祥市| 隆回县| 湘阴县| 肇州县| 杭锦后旗| 石河子市| 海淀区| 乌恰县|