找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata, Languages and Programming; 24th International C Pierpaolo Degano,Roberto Gorrieri,Alberto Marchett Conference proceedings 1997 Sp

[復(fù)制鏈接]
樓主: hector
51#
發(fā)表于 2025-3-30 10:38:26 | 只看該作者
52#
發(fā)表于 2025-3-30 14:10:19 | 只看該作者
978-3-540-63165-1Springer-Verlag Berlin Heidelberg 1997
53#
發(fā)表于 2025-3-30 19:57:33 | 只看該作者
54#
發(fā)表于 2025-3-31 00:07:31 | 只看該作者
55#
發(fā)表于 2025-3-31 04:06:14 | 只看該作者
Tilings and quasiperiodicity,it was introduced for representing quasicrystals and it is also motivated by the study of quasiperiodic words. We prove that if a tile set can tile the plane, then it can tile the plane quasiperiodically — a surprising result that does not hold for periodicity. In order to compare the regularity of
56#
發(fā)表于 2025-3-31 05:03:35 | 只看該作者
57#
發(fā)表于 2025-3-31 10:53:13 | 只看該作者
58#
發(fā)表于 2025-3-31 15:22:02 | 只看該作者
An abstract data type for real numbers,ity of the calculus (i.e. every computable element is definable). We address the general problem of providing an operational semantics to calculi for the real numbers. We present a possible solution based on a new representation for the real numbers.
59#
發(fā)表于 2025-3-31 17:52:03 | 只看該作者
Recursive computational depth,ure. In particular, Bennett identified the classes of . and . sequences, and showed that the halting problem is strongly deep. Juedes, Lathrop, and Lutz subsequently extended this result by defining the class of . sequences, and proving that every weakly useful sequence is strongly deep..The present
60#
發(fā)表于 2025-3-31 23:56:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
那坡县| 班玛县| 蒙阴县| 大化| 全椒县| 中方县| 涟水县| 伊宁市| 柳河县| 龙井市| 大港区| 莎车县| 安宁市| 东平县| 科技| 简阳市| 泸溪县| 通州区| 万源市| 原阳县| 晋江市| 娱乐| 广丰县| 新营市| 三门峡市| 通河县| 贞丰县| 桐乡市| 临澧县| 神木县| 赤峰市| 安乡县| 固始县| 罗定市| 南宁市| 宿州市| 通许县| 霍山县| 乐清市| 宁都县| 正安县|