找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata, Languages and Programming; 24th International C Pierpaolo Degano,Roberto Gorrieri,Alberto Marchett Conference proceedings 1997 Sp

[復(fù)制鏈接]
樓主: hector
51#
發(fā)表于 2025-3-30 10:38:26 | 只看該作者
52#
發(fā)表于 2025-3-30 14:10:19 | 只看該作者
978-3-540-63165-1Springer-Verlag Berlin Heidelberg 1997
53#
發(fā)表于 2025-3-30 19:57:33 | 只看該作者
54#
發(fā)表于 2025-3-31 00:07:31 | 只看該作者
55#
發(fā)表于 2025-3-31 04:06:14 | 只看該作者
Tilings and quasiperiodicity,it was introduced for representing quasicrystals and it is also motivated by the study of quasiperiodic words. We prove that if a tile set can tile the plane, then it can tile the plane quasiperiodically — a surprising result that does not hold for periodicity. In order to compare the regularity of
56#
發(fā)表于 2025-3-31 05:03:35 | 只看該作者
57#
發(fā)表于 2025-3-31 10:53:13 | 只看該作者
58#
發(fā)表于 2025-3-31 15:22:02 | 只看該作者
An abstract data type for real numbers,ity of the calculus (i.e. every computable element is definable). We address the general problem of providing an operational semantics to calculi for the real numbers. We present a possible solution based on a new representation for the real numbers.
59#
發(fā)表于 2025-3-31 17:52:03 | 只看該作者
Recursive computational depth,ure. In particular, Bennett identified the classes of . and . sequences, and showed that the halting problem is strongly deep. Juedes, Lathrop, and Lutz subsequently extended this result by defining the class of . sequences, and proving that every weakly useful sequence is strongly deep..The present
60#
發(fā)表于 2025-3-31 23:56:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
繁昌县| 特克斯县| 名山县| 海口市| 宜都市| 平阳县| 棋牌| 渭南市| 汉中市| 南汇区| 正蓝旗| 夹江县| 怀来县| 博野县| 正阳县| 阳西县| 泰州市| 金华市| 屏南县| 岳阳市| 高雄县| 诸城市| 婺源县| 九龙县| 台湾省| 七台河市| 北海市| 开江县| 芜湖市| 应用必备| 湖南省| 休宁县| 乡城县| 特克斯县| 灌南县| 张家港市| 呼伦贝尔市| 彭州市| 获嘉县| 泸水县| 霍林郭勒市|