找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata, Languages and Programming; 28th International C Fernando Orejas,Paul G. Spirakis,Jan Leeuwen Conference proceedings 2001 Springer

[復(fù)制鏈接]
樓主: Fatuous
31#
發(fā)表于 2025-3-26 21:20:38 | 只看該作者
32#
發(fā)表于 2025-3-27 03:41:50 | 只看該作者
Approximation Algorithms for Partial Covering Problemsty at most three, we obtain an approximation of 4/3. We also present better-than-2-approximation algorithms for .-vertex cover on bounded degree graphs, and for vertex cover on expanders of bounded . degree. We obtain a polynomial-time approximation scheme for .-vertex cover on planar graphs, and for covering points in .. by disks.
33#
發(fā)表于 2025-3-27 06:42:22 | 只看該作者
34#
發(fā)表于 2025-3-27 12:08:44 | 只看該作者
Zur Faszination von Action- und Horrorfilmenesults on evolutionary algorithms are presented in order to show how theoretical results on randomized search heuristics can be proved and how they contribute to the understanding of evolutionary algorithms.
35#
發(fā)表于 2025-3-27 16:03:54 | 只看該作者
36#
發(fā)表于 2025-3-27 19:51:27 | 只看該作者
https://doi.org/10.1007/978-3-662-66706-4the discrepancy with respect to the set of all subintervals, and give an efficient algorithm to report all of them. Then, we give an optimal method to construct a compact graph to represent the set of global roundings satisfying a weaker discrepancy condition.
37#
發(fā)表于 2025-3-28 01:14:14 | 只看該作者
Gewaltfreie M?nnlichkeitsidealeximation lower bounds of 101/100 and 203/202, respectively, for these problems. We prove also approximation lower bounds of 321/320 and 743/742 for the asymmetric and symmetric TSP with distances one and two.
38#
發(fā)表于 2025-3-28 02:35:49 | 只看該作者
39#
發(fā)表于 2025-3-28 10:12:19 | 只看該作者
Theoretical Aspects of Evolutionary Algorithmsesults on evolutionary algorithms are presented in order to show how theoretical results on randomized search heuristics can be proved and how they contribute to the understanding of evolutionary algorithms.
40#
發(fā)表于 2025-3-28 13:31:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 23:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永兴县| 德庆县| 大宁县| 翁源县| 兰西县| 深圳市| 上杭县| 嘉善县| 县级市| 河源市| 舞钢市| 孟连| 佛学| 隆子县| 九江县| 昆明市| 龙南县| 额敏县| 石首市| 太保市| 上栗县| 石城县| 祥云县| 克什克腾旗| 民权县| 晋中市| 郁南县| 东城区| 潜山县| 巴塘县| 屯留县| 景德镇市| 宁蒗| 信阳市| 仪征市| 枣阳市| 诏安县| 云阳县| 温泉县| 南开区| 涟水县|