找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata Implementation; Third International Jean-Marc Champarnaud,Djelloul Ziadi,Denis Maurel Conference proceedings 1999 Springer-Verlag

[復制鏈接]
樓主: Enclosure
31#
發(fā)表于 2025-3-27 00:01:49 | 只看該作者
32#
發(fā)表于 2025-3-27 02:00:31 | 只看該作者
Minimal Cover-Automata for Finite Languages,rd in .. A minimal deterministic cover automaton of a finite language . usually has a smaller size than a minimal DFA that accept .. Thus, cover automata can be used to reduce the size of the representations of finite languages in practice. In this paper, we describe an efficient algorithm that, for
33#
發(fā)表于 2025-3-27 09:18:48 | 只看該作者
Implementing Reversed Alternating Finite Automaton (r-AFA) Operations,ibed our algorithms and implementation methods for the union, intersection, and complementation of r-AFA. However, our direct algorithms for the star, concatenation, and reversal operations of r- AFA would cause an exponential expansion in the size of resulting r-AFA for even the average cases. In t
34#
發(fā)表于 2025-3-27 13:08:21 | 只看該作者
35#
發(fā)表于 2025-3-27 15:28:34 | 只看該作者
36#
發(fā)表于 2025-3-27 19:55:18 | 只看該作者
37#
發(fā)表于 2025-3-28 00:52:25 | 只看該作者
38#
發(fā)表于 2025-3-28 05:51:28 | 只看該作者
39#
發(fā)表于 2025-3-28 06:29:01 | 只看該作者
Proving Sequential Function Chart Programs Using Automata,physical time can be handled by SFC programs using temporisations, that’s why we are interested in the quantitative temporal properties. We have proposed a modeling of SFC in timed automata, a formalism which takes time into account. In this modeling, we use the physical constraints of the environme
40#
發(fā)表于 2025-3-28 10:52:09 | 只看該作者
Automata and Computational Probabilities, associated formal series, are the basic theoretical tool for representing experiments, and for solving probability problems. Starting from a description of a random experiment given as a special kind of regular expressions, the environment constructs automata from which it extracts generating serie
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
商水县| 合肥市| 安阳市| 河池市| 班玛县| 长宁区| 太仆寺旗| 西昌市| 清徐县| 贵溪市| 科技| 涟水县| 南靖县| 花莲市| 克拉玛依市| 柞水县| 察隅县| 舞钢市| 彭阳县| 无极县| 剑川县| 唐河县| 米脂县| 平定县| 宁南县| 盐源县| 宁海县| 榆林市| 湘西| 广德县| 潍坊市| 泰来县| 建昌县| 常山县| 平利县| 景东| 武安市| 神农架林区| 融水| 湟源县| 龙州县|