找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata Implementation; Third International Jean-Marc Champarnaud,Djelloul Ziadi,Denis Maurel Conference proceedings 1999 Springer-Verlag

[復(fù)制鏈接]
樓主: Enclosure
31#
發(fā)表于 2025-3-27 00:01:49 | 只看該作者
32#
發(fā)表于 2025-3-27 02:00:31 | 只看該作者
Minimal Cover-Automata for Finite Languages,rd in .. A minimal deterministic cover automaton of a finite language . usually has a smaller size than a minimal DFA that accept .. Thus, cover automata can be used to reduce the size of the representations of finite languages in practice. In this paper, we describe an efficient algorithm that, for
33#
發(fā)表于 2025-3-27 09:18:48 | 只看該作者
Implementing Reversed Alternating Finite Automaton (r-AFA) Operations,ibed our algorithms and implementation methods for the union, intersection, and complementation of r-AFA. However, our direct algorithms for the star, concatenation, and reversal operations of r- AFA would cause an exponential expansion in the size of resulting r-AFA for even the average cases. In t
34#
發(fā)表于 2025-3-27 13:08:21 | 只看該作者
35#
發(fā)表于 2025-3-27 15:28:34 | 只看該作者
36#
發(fā)表于 2025-3-27 19:55:18 | 只看該作者
37#
發(fā)表于 2025-3-28 00:52:25 | 只看該作者
38#
發(fā)表于 2025-3-28 05:51:28 | 只看該作者
39#
發(fā)表于 2025-3-28 06:29:01 | 只看該作者
Proving Sequential Function Chart Programs Using Automata,physical time can be handled by SFC programs using temporisations, that’s why we are interested in the quantitative temporal properties. We have proposed a modeling of SFC in timed automata, a formalism which takes time into account. In this modeling, we use the physical constraints of the environme
40#
發(fā)表于 2025-3-28 10:52:09 | 只看該作者
Automata and Computational Probabilities, associated formal series, are the basic theoretical tool for representing experiments, and for solving probability problems. Starting from a description of a random experiment given as a special kind of regular expressions, the environment constructs automata from which it extracts generating serie
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澳门| 孝昌县| 伊宁县| 淅川县| 平阳县| 枝江市| 开阳县| 六枝特区| 景洪市| 晋中市| 昌乐县| 桦南县| 西吉县| 迁安市| 江源县| 葫芦岛市| 白城市| 道真| 上思县| 浠水县| 甘南县| 临夏县| 开平市| 溧阳市| 军事| 礼泉县| 军事| 赣州市| 南陵县| 吉木乃县| 乌鲁木齐县| 沧源| 沅陵县| 偏关县| 新乡县| 永州市| 田阳县| 延安市| 永仁县| 两当县| 元朗区|