找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Auto-Grader - Auto-Grading Free Text Answers; Robin Richner Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: 熱情美女
11#
發(fā)表于 2025-3-23 11:22:19 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7As follows the research problem, objective and anticipated contribution are stated.
12#
發(fā)表于 2025-3-23 15:23:51 | 只看該作者
13#
發(fā)表于 2025-3-23 22:06:25 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7Firstly, this chapter will introduce the technological background needed to understand how a state-of-the-art auto-grader may look and secondly elaborate on related work in the field of automatic grading.
14#
發(fā)表于 2025-3-23 23:03:44 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7This chapter commences with a description of the provided data, continues with an analysis and preprocessing of the data and ends with a preprocessed data set in the form of a pandas dataframe as a base for the model development. Note that there will still be adjustments to the data depending on the model approach as outlined in chapter 5.
15#
發(fā)表于 2025-3-24 06:05:42 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7There are five models described as follows which can be divided into three categories. The models in the categories differ in their data augmentation strategy and in their architecture. Data augmentation refers to how the data is fed into the model. The architecture refers to the specific neural networks used.
16#
發(fā)表于 2025-3-24 10:01:44 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7This chapter discusses the thesis, elaborates on the limitations and further research opportunities. Hereby, it is divided into preprocessing, data augmentation, pre-training, fine-tuning, and bias.
17#
發(fā)表于 2025-3-24 13:57:31 | 只看該作者
https://doi.org/10.1007/978-3-531-94266-7The thesis introduced the time constraint that teachers face when it comes to grading free text answer questions. The objective was to create a system that would assist teachers to save time on that task. It could be seen that related work consists of various AI and non AI-based approaches and dates back to 1964.
18#
發(fā)表于 2025-3-24 18:55:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:07 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:54 | 只看該作者
Research Background,Firstly, this chapter will introduce the technological background needed to understand how a state-of-the-art auto-grader may look and secondly elaborate on related work in the field of automatic grading.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无为县| 清徐县| 苏尼特右旗| 青铜峡市| 新沂市| 靖边县| 正宁县| 凯里市| 姜堰市| 洛阳市| 桑日县| 南木林县| 苏尼特右旗| 徐汇区| 红安县| 津市市| 固安县| 姜堰市| 潍坊市| 荆门市| 高碑店市| 晋州市| 西乡县| 江门市| 合水县| 和平县| 尼勒克县| 任丘市| 泸定县| 平乐县| 旺苍县| 秦皇岛市| 丹寨县| 富宁县| 岫岩| 定结县| 大足县| 中山市| 康马县| 安阳县| 武宁县|