找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio- and Video-Based Biometric Person Authentication; 5th International Co Takeo Kanade,Anil Jain,Nalini K. Ratha Conference proceedings

[復制鏈接]
樓主: 無法修復
51#
發(fā)表于 2025-3-30 12:05:37 | 只看該作者
52#
發(fā)表于 2025-3-30 14:33:39 | 只看該作者
Magnetic Fields in Irregular Galaxieslarity measure is adopted as the matching criterion. Four wavelet filters containing Haar, Daubechies-8, Biorthogonal 3.5, and Biorthogonal 4.4 are evaluated and they all perform better than the feature of Gaussian-Hermite moments. Experimental results demonstrate that the proposed features can provide promising performance for iris recognition.
53#
發(fā)表于 2025-3-30 19:36:06 | 只看該作者
54#
發(fā)表于 2025-3-30 22:24:03 | 只看該作者
Head-on collisions and rings of fire,eference subspace, representing learnt identity. To extract effective features for identification both subspaces are projected onto multiple constraint subspaces. For generating constraint subspaces we apply ensemble learning algorithms, i.e. Bagging and Boosting. Through experimental results we show the effectiveness of our method.
55#
發(fā)表于 2025-3-31 04:40:52 | 只看該作者
https://doi.org/10.1007/978-94-009-4702-3ngle hand-labeled model graph. We apply the model to the representation, recognition and reconstruction of nine different facial expressions. After training, the model is capable of automatically finding facial landmarks, extracting deformation parameters and reconstructing faces in any of the learned expressions.
56#
發(fā)表于 2025-3-31 05:42:51 | 只看該作者
57#
發(fā)表于 2025-3-31 11:30:55 | 只看該作者
Specific Texture Analysis for Iris Recognitionn the CASIA database in verification mode and show an EER of 0.07%. Degraded version of the CASIA database results in an EER of 2.3%, which is lower than result obtained by the classical wavelet demodulation (WD) method in that database.
58#
發(fā)表于 2025-3-31 16:43:22 | 只看該作者
Face Recognition with the Multiple Constrained Mutual Subspace Methodeference subspace, representing learnt identity. To extract effective features for identification both subspaces are projected onto multiple constraint subspaces. For generating constraint subspaces we apply ensemble learning algorithms, i.e. Bagging and Boosting. Through experimental results we show the effectiveness of our method.
59#
發(fā)表于 2025-3-31 20:35:56 | 只看該作者
A Flexible Object Model for Recognising and Synthesising Facial Expressionsngle hand-labeled model graph. We apply the model to the representation, recognition and reconstruction of nine different facial expressions. After training, the model is capable of automatically finding facial landmarks, extracting deformation parameters and reconstructing faces in any of the learned expressions.
60#
發(fā)表于 2025-3-31 22:42:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 17:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
封开县| 邵东县| 揭阳市| 吴旗县| 海门市| 内黄县| 德清县| 东阿县| 淮北市| 凉山| 定远县| 河北区| 锡林浩特市| 资源县| 涡阳县| 彭山县| 兴隆县| 富源县| 南丰县| 扶风县| 克什克腾旗| 濮阳县| 南安市| 阳东县| 花莲市| 桐庐县| 元谋县| 苏尼特右旗| 麻阳| 明溪县| 乐清市| 营口市| 怀安县| 肇东市| 揭阳市| 广饶县| 拜泉县| 漳浦县| 新河县| 松原市| 马鞍山市|