找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio- and Video-Based Biometric Person Authentication; Third International Josef Bigun,Fabrizio Smeraldi Conference proceedings 2001 Spri

[復制鏈接]
樓主: 投降
31#
發(fā)表于 2025-3-26 21:05:12 | 只看該作者
32#
發(fā)表于 2025-3-27 02:15:35 | 只看該作者
33#
發(fā)表于 2025-3-27 05:51:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:28:42 | 只看該作者
Face Recognition Using Support Vector Machines with the Feature Set Extracted by Genetic Algorithms hair styles, and so on. This paper proposes a method of face recognition by using support vector machines with the feature set extracted by genetic algorithms. By selecting the feature set that has superior performance in recognizing faces, the use of unnecessary information of the faces can be avo
35#
發(fā)表于 2025-3-27 15:08:19 | 只看該作者
Comparative Performance Evaluation of Gray-Scale and Color Information for Face Recognition Tasksrmation improves performance for detecting and locating eyes and faces, respectively, and that there is no significant difference in recognition accuracy between full color and gray-scale face imagery. Our experiments have also shown that the eigenvectors generated by the red channel lead to improve
36#
發(fā)表于 2025-3-27 19:15:21 | 只看該作者
37#
發(fā)表于 2025-3-27 23:46:56 | 只看該作者
Face Recognition by Auto-associative Radial Basis Function Networko capture the substantial facial features and reduce computational complexity, we propose to use wavelet transform (WT) to decompose face images and choose the lowest resolution subband coefficients for face representation. Results indicate that our scheme yields accurate recognition on the widely u
38#
發(fā)表于 2025-3-28 03:45:40 | 只看該作者
Face Recognition Using Independent Component Analysis and Support Vector Machines ?ave demonstrated high generalization capabilities in many different tasks, including the object recognition problem. ICA is a feature extraction technique which can be considered a generalization of Principal Component Analysis (PCA). ICA has been mainly used on the problem of blind signal separatio
39#
發(fā)表于 2025-3-28 07:28:42 | 只看該作者
A Comparison of Face/Non-face Classiffiers an evaluation protocol for face/non-face classification and provide experimental comparison of six algorithms. The overall best performing algorithms are the baseline template matching algorithms. Our results emphasize the importance of preprocessing.
40#
發(fā)表于 2025-3-28 14:26:47 | 只看該作者
Using Mixture Covariance Matrices to Improve Face and Facial Expression Recognitionsof training samples for each pattern is significantly less than the dimension of the feature space. This statement implies that the sample group covariance matrices often used in the Gaussian maximum probability classifier are singular. A common solution to this problem is to assume that all groups
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武宁县| 资溪县| 洪湖市| 嘉祥县| 汨罗市| 郯城县| 新民市| 贡觉县| 通州区| 双江| 平阴县| 黄山市| 钟祥市| 安顺市| 独山县| 安岳县| 峡江县| 阳山县| 浙江省| 佳木斯市| 正蓝旗| 马龙县| 垫江县| 铜梁县| 峨边| 兰坪| 资阳市| 绿春县| 铁岭县| 武定县| 板桥市| 将乐县| 晴隆县| 漾濞| 临城县| 阿鲁科尔沁旗| 海门市| 苍山县| 昔阳县| 红桥区| 潼关县|