找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio-and Video-Based Biometric Person Authentication; 4th International Co Josef Kittler,Mark S. Nixon Conference proceedings 2003 Springe

[復制鏈接]
樓主: Jaundice
41#
發(fā)表于 2025-3-28 15:49:32 | 只看該作者
42#
發(fā)表于 2025-3-28 19:03:39 | 只看該作者
43#
發(fā)表于 2025-3-29 02:43:21 | 只看該作者
Expression-Invariant 3D Face Recognition a representation of the facial surface, invariant to isometric deformations, such as those resulting from different expressions and postures of the face. The obtained geometric invariants allow mapping 2D facial texture images into special images that incorporate the 3D geometry of the face. These
44#
發(fā)表于 2025-3-29 03:15:24 | 只看該作者
45#
發(fā)表于 2025-3-29 07:20:03 | 只看該作者
A Bayesian Network Approach for Combining Pitch and Reliable Spectral Envelope Features for Robust S data theory and Bayesian networks. This approach integrates high-level information concerning the reliability of pitch and spectral envelope features in missing feature compensation process in order to increase the performance of Gaussian mixture models (GMM) of speakers. In this paper, a Bayesian
46#
發(fā)表于 2025-3-29 14:48:44 | 只看該作者
Cluster-Dependent Feature Transformation for Telephone-Based Speaker Verification available during the training phase. The technique combines a cluster selector with cluster-dependent feature transformations to reduce the acoustic mismatches among different handsets. Specifically, a GMM-based cluster selector is trained to identify the cluster that best represents the handset us
47#
發(fā)表于 2025-3-29 18:48:05 | 只看該作者
Searching through a Speech Memory for Text-Independent Speaker Verificationc feature vectors. Previous studies have shown that phonemes have different discriminant power for the speaker verification task. In order to better exploit these differences, it seems reasonable to segment the speech in distinct speech classes and carry out the speaker modeling for each class separ
48#
發(fā)表于 2025-3-29 22:21:09 | 只看該作者
LUT-Based Adaboost for Gender Classification better in correct rate but are more computation intensive while Adaboost ones are much faster with slightly worse performance. For possible real-time applications the Adaboost method seems a better choice. However, the existing Adaboost algorithms take simple threshold weak classifiers, which are t
49#
發(fā)表于 2025-3-30 01:59:22 | 只看該作者
Independent Component Analysis and Support Vector Machine for Face Feature Extractionlization context. The goal is to find a better space where project the data in order to build ten different face-feature classi fiers that are robust to illumination variations and bad environment conditions. The method was tested on the BANCA database, in different scenarios: controlled conditions,
50#
發(fā)表于 2025-3-30 07:28:10 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
福贡县| 榆树市| 邮箱| 平湖市| 沐川县| 栖霞市| 崇州市| 崇左市| 从化市| 栾城县| 甘孜| 石林| 洛川县| 化隆| 光山县| 汤阴县| 隆德县| 冕宁县| 白城市| 资中县| 双柏县| 安溪县| 弥勒县| 贺州市| 武胜县| 堆龙德庆县| 西宁市| 东海县| 宁阳县| 长岛县| 鄂尔多斯市| 辉县市| 鄂托克前旗| 淳安县| 扶绥县| 盘锦市| 宁波市| 苏尼特左旗| 兴仁县| 遂平县| 海宁市|