找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio Source Separation; Shoji Makino Book 2018 Springer International Publishing AG 2018 audio source separation methods.non-negative mat

[復(fù)制鏈接]
樓主: 威風(fēng)
21#
發(fā)表于 2025-3-25 03:58:44 | 只看該作者
22#
發(fā)表于 2025-3-25 09:24:29 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaitherthe recent noise reduction study, it was found that optimized iterative spectral subtraction (SS) results in speech enhancement with almost no musical noise generation, but this method is valid only for stationary noise. The method presented in this chapter consists of iterative blind dynamic noise
23#
發(fā)表于 2025-3-25 12:11:45 | 只看該作者
https://doi.org/10.1007/978-0-387-49577-4 by a single microphone and by a video camera. We address the problem of separating a particular sound source from all other sources focusing specifically on obtaining an underlying representation of it while attenuating all other sources. By pointing the video camera merely to the desired sound sou
24#
發(fā)表于 2025-3-25 19:31:50 | 只看該作者
https://doi.org/10.1007/978-3-319-73031-8audio source separation methods; non-negative matrix factorization (NMF); deep neural networks (DNN) f
25#
發(fā)表于 2025-3-25 21:01:25 | 只看該作者
26#
發(fā)表于 2025-3-26 01:10:52 | 只看該作者
27#
發(fā)表于 2025-3-26 07:35:11 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:47 | 只看該作者
29#
發(fā)表于 2025-3-26 12:48:53 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaitherhe training data and usage scenario. We present also how semi-supervised learning can be used to deal with unknown noise sources within a mixture and finally we introduce a coupled NMF method which can be used to model large temporal context while retaining low algorithmic latency.
30#
發(fā)表于 2025-3-26 18:22:47 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaithernally, we present its application to a speech enhancement task and a music separation task. The experimental results show the benefit of the multichannel DNN-based approach over a single-channel DNN-based approach and the multichannel nonnegative matrix factorization based iterative EM framework.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保靖县| 康马县| 贡嘎县| 防城港市| 罗甸县| 治多县| 新营市| 阿荣旗| 清河县| 滨州市| 河北区| 亳州市| 高台县| 天祝| 滦平县| 莱州市| 灵宝市| 洞口县| 沙洋县| 稻城县| 尼玛县| 获嘉县| 安吉县| 新乡市| 承德县| 益阳市| 枣强县| 德州市| 拜泉县| 海兴县| 梓潼县| 伊春市| 阳新县| 麟游县| 商城县| 廉江市| 晋宁县| 奈曼旗| 桂东县| 苍山县| 临澧县|