找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio Source Separation; Shoji Makino Book 2018 Springer International Publishing AG 2018 audio source separation methods.non-negative mat

[復(fù)制鏈接]
樓主: 威風(fēng)
11#
發(fā)表于 2025-3-23 12:49:26 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaither training material is available in advance. We first present the basic NMF formulation for sound mixtures and then present criteria and algorithms for estimating the model parameters. We introduce selected methods for training the NMF source models by using either vector quantisation, convexity cons
12#
發(fā)表于 2025-3-23 15:48:28 | 只看該作者
https://doi.org/10.1007/978-0-387-49577-4ral information, instead focusing on resolving each incoming spectrum independently. In this chapter we will present some methods that learn to incorporate the temporal aspects of sounds and use that information to perform improved separation. We will show three such models, a conlvolutive model tha
13#
發(fā)表于 2025-3-23 18:31:04 | 只看該作者
https://doi.org/10.1007/978-0-387-49577-4ensions are introduced within a more general local Gaussian modeling (LGM) framework. These methods are very attractive since allow combining spatial and spectral cues in a joint and principal way, but also are natural extensions and generalizations of many single-channel NMF-based methods to the mu
14#
發(fā)表于 2025-3-24 00:42:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:56 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaithers (IVA) and nonnegative matrix factorization (NMF). IVA is a state-of-the-art technique that utilizes the statistical independence between source vectors. However, since the source model in IVA is based on a spherically symmetric multivariate distribution, IVA cannot utilize the characteristics of s
16#
發(fā)表于 2025-3-24 07:02:44 | 只看該作者
17#
發(fā)表于 2025-3-24 13:28:30 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaither More computationally demanding approaches tend to produce better results, but often not fast enough to be deployed in practical systems. For example, as opposed to the iterative separation algorithms using source-specific dictionaries, a Deep Neural Network (DNN) performs separation via an iteratio
18#
發(fā)表于 2025-3-24 16:34:20 | 只看該作者
19#
發(fā)表于 2025-3-24 22:55:07 | 只看該作者
20#
發(fā)表于 2025-3-24 23:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
美姑县| 张家界市| 桂林市| 桃园县| 新绛县| 麟游县| 大同市| 元谋县| 绿春县| 武邑县| 荔波县| 盐边县| 赤壁市| 札达县| 茌平县| 沂水县| 新巴尔虎左旗| 仁怀市| 灌南县| 资阳市| 威信县| 卓资县| 海丰县| 庆城县| 山东| 永吉县| 中西区| 顺平县| 怀仁县| 漾濞| 吉水县| 永兴县| 绥阳县| 河东区| 玉屏| 金堂县| 女性| 新民市| 福州市| 静安区| 固阳县|