找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors for infinite-dimensional non-autonomous dynamical systems; Alexandre N. Carvalho,José A. Langa,James C. Robin Book 2013 Springe

[復(fù)制鏈接]
樓主: Exacting
21#
發(fā)表于 2025-3-25 05:34:11 | 只看該作者
22#
發(fā)表于 2025-3-25 10:38:03 | 只看該作者
G Protein-Coupled Receptor Screening Assayschapter we illustrate the results of Chaps. 2 and 4 by driving the dynamics with a non-autonomous forcing term. With such an equation, which has no clear underlying structure (like a Lyapunov function, for example), the application of the more ‘global’ results of these two chapters (existence of a f
23#
發(fā)表于 2025-3-25 12:37:28 | 只看該作者
24#
發(fā)表于 2025-3-25 18:09:21 | 只看該作者
https://doi.org/10.1007/978-1-4939-2336-6 to compare the asymptotic dynamics of systems with different ‘parameter values’ by comparing their attractors and the flow on them. We assume that . and converges to a continuously differentiable function . as ε goes to zero. For this problem we prove that the attractors are continuous at ε = 0 and
25#
發(fā)表于 2025-3-25 22:33:41 | 只看該作者
26#
發(fā)表于 2025-3-26 01:01:07 | 只看該作者
Chenyi Liao,Victor May,Jianing Lipyzhov and Vishik (2002) [see also the appendix in the book by Vishik (1992)]. Reinterpreted in the language of processes, the uniform attractor is the minimal fixed (time-independent) compact subset . of the phase space that attracts all trajectories uniformly for bounded sets . of initial conditio
27#
發(fā)表于 2025-3-26 08:10:26 | 只看該作者
https://doi.org/10.1007/978-1-4939-1218-6In this chapter we develop the existence theory for pullback attractors in a way that recovers well known results for the global attractors of autonomous systems as a particular case (see, for example, Babin and Vishik 1992; Chepyzhov and Vishik 2002;Cholewa and Dlotko 2000; Chueshov 1999; Hale 1988; Ladyzhenskaya 1991; Robinson 2001; Temam 1988).
28#
發(fā)表于 2025-3-26 12:12:45 | 只看該作者
https://doi.org/10.1007/978-1-4939-2336-6In this chapter we consider the asymptotic dynamics of parabolic problems of the form . where . is a positive integer, . is a bounded domain with smooth boundary ., ., ., and . is measurable in the first variable and locally Lipschitz in the second and third variables, uniformly for ..
29#
發(fā)表于 2025-3-26 15:48:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:04:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍南县| 海安县| 桃园县| 石棉县| 栾城县| 大庆市| 九台市| 梁山县| 阳谷县| 阳朔县| 铜梁县| 海南省| 思茅市| 峨眉山市| 资中县| 上栗县| 红桥区| 且末县| 合江县| 兰考县| 康保县| 开阳县| 元江| 阳朔县| 平陆县| 丰顺县| 武川县| 孝昌县| 手游| 霍林郭勒市| 灵川县| 康马县| 吉安市| 隆子县| 诸暨市| 珲春市| 瑞金市| 名山县| 邵阳市| 久治县| 黄龙县|