找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors Under Discretisation; Xiaoying Han,Peter Kloeden Book 2017 The Author(s) 2017 One step numerical schemes.Autonomous dynamicl sy

[復制鏈接]
樓主: 古生物學
21#
發(fā)表于 2025-3-25 03:48:47 | 只看該作者
Linear SystemsStability of linear systems by eigenvalue conditions is introduced. Stability conditions for one and two dimensional, as well as general linear systems, are established.
22#
發(fā)表于 2025-3-25 08:38:05 | 只看該作者
Lyapunov FunctionsLyapunov functions are defined and used to investigate the stability of the zero solution to Euler schemes for linear and nonlinear ODEs.
23#
發(fā)表于 2025-3-25 13:35:58 | 只看該作者
Dissipative Systems with Steady StatesThe preservation or stability of the zero solution to Euler schemes for dissipative systems is established using Lyapunov functions.
24#
發(fā)表于 2025-3-25 16:09:04 | 只看該作者
Saddle Points Under DiscretisationSaddle points for Euler schemes for ODEs are discussed. Numerical stable and unstable manifolds are illustrated through a set of examples, and compared to the stable and unstable manifolds of the ODEs. The shadowing phenomenon is briefly illustrated. Finally, Beyn’s Theorem is presented.
25#
發(fā)表于 2025-3-25 21:41:28 | 只看該作者
Dissipative Systems with AttractorsEuler schemes for dissipative ODE systems with attractors are presented and shown to possess numerical attractors that converge to the ODE attractors upper semi continuously. A counterexample shows that the numerical attractor need not convergence lower semi continuously.
26#
發(fā)表于 2025-3-26 02:27:47 | 只看該作者
27#
發(fā)表于 2025-3-26 05:35:30 | 只看該作者
Discretisation of an Attractor: General CaseKloeden and Lorenz’s Theorem on the existence of a maximal numerical attractor of one step numerical schemes for general autonomous ODEs with a global attractor is stated and proved.
28#
發(fā)表于 2025-3-26 10:06:31 | 只看該作者
29#
發(fā)表于 2025-3-26 14:01:50 | 只看該作者
30#
發(fā)表于 2025-3-26 18:50:33 | 只看該作者
Variable Step Size Discretisation of Autonomous AttractorsDiscretising autonomous ODEs with variable step size results in discrete nonautonomous semi-dynamical systems. Numerical omega limit sets for such dynamical systems are constructed and shown to converge to the attractor for the ODEs upper semi continuously.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 19:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
马鞍山市| 射洪县| 镇坪县| 尤溪县| 台东市| 如皋市| 科技| 米易县| 乌鲁木齐县| 鲁甸县| 海安县| 黄石市| 合水县| 故城县| 逊克县| 汝城县| 措美县| 西城区| 民丰县| 元朗区| 上林县| 蒲江县| 罗田县| 云霄县| 广汉市| 嵊泗县| 交城县| 仲巴县| 邹城市| 巨野县| 葵青区| 奇台县| 衡山县| 涿鹿县| 平江县| 平利县| 久治县| 吉水县| 镇安县| 三江| 五原县|