找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attacks, Defenses and Testing for Deep Learning; Jinyin Chen,Ximin Zhang,Haibin Zheng Book 2024 The Editor(s) (if applicable) and The Auth

[復制鏈接]
樓主: risky-drinking
41#
發(fā)表于 2025-3-28 15:43:27 | 只看該作者
Adversarial Attacks on?GNN-Based Vertical Federated Learningon the noise-enhanced global node embeddings, leveraging privacy leakage and the gradient of pairwise nodes. Our approach begins by stealing the global node embeddings and constructing a shadow model of the server for the attack generator. Next, we introduce noise into the node embeddings to confuse
42#
發(fā)表于 2025-3-28 19:17:09 | 只看該作者
43#
發(fā)表于 2025-3-29 01:13:38 | 只看該作者
Query-Efficient Adversarial Attack Against Vertical Federated Graph Learningd using the manipulated data to imitate the behavior of the server model in VFGL. Consequently, the shadow model can significantly boost the success rate of centralized attacks with minimal queries. Multiple tests conducted on four real-world benchmarks show that our method can enhance the performan
44#
發(fā)表于 2025-3-29 06:56:17 | 只看該作者
45#
發(fā)表于 2025-3-29 09:21:32 | 只看該作者
Backdoor Attack on?Dynamic Link Predictionet. This process helps reduce the size of the triggers and enhances the concealment of the attack. Experimental results demonstrate that our method successfully launches backdoor attacks on several state-of-the-art DLP models, achieving a success rate exceeding 90%.
46#
發(fā)表于 2025-3-29 15:06:32 | 只看該作者
Attention Mechanism-Based Adversarial Attack Against DRLdversarial state. DQN is one of the state-of-the-art DRL models and is used as the target model to train the Flappybird gaming environment to assure continuous operation and high success rates. We performed comprehensive attack experiments on DQN and examined its attack performance in terms of rewar
47#
發(fā)表于 2025-3-29 17:46:55 | 只看該作者
48#
發(fā)表于 2025-3-29 20:14:56 | 只看該作者
49#
發(fā)表于 2025-3-30 03:14:53 | 只看該作者
50#
發(fā)表于 2025-3-30 07:26:08 | 只看該作者
Adaptive Channel Transformation-Based Detector for?Adversarial Attacksn instances but also can recognize the types of attacks, such as white-box attacks and black-box attacks. In order to validate the detection efficiency of our method, we conduct comprehensive experiments on MNIST, CIFAR10, and ImageNet datasets. With 99.05% and 98.8% detection rates on the MNIST and
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 08:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大渡口区| 楚雄市| 中牟县| 孟连| 行唐县| 福安市| 奉节县| 当阳市| 绿春县| 咸阳市| 沙河市| 本溪| 蕲春县| 安乡县| 休宁县| 河西区| 新郑市| 余庆县| 洪洞县| 衢州市| 井冈山市| 股票| 扶余县| 七台河市| 平山县| 工布江达县| 疏附县| 册亨县| 玛多县| 怀宁县| 中江县| 疏附县| 兴安盟| 盘山县| 肥东县| 洱源县| 和林格尔县| 田阳县| 南开区| 囊谦县| 沾益县|