找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Atomicity through Fractal Measure Theory; Mathematical and Phy Alina Gavrilu?,Ioan Merche?,Maricel Agop Book 2019 Springer Nature Switzerla

[復(fù)制鏈接]
樓主: duodenum
21#
發(fā)表于 2025-3-25 04:31:57 | 只看該作者
Atomicity via regularity for non-additive set multifunctions,In this chapter, atomicity is discussed via regularity for set multifunctions taking values in the family of all non- void subsets of a topological space.
22#
發(fā)表于 2025-3-25 11:35:06 | 只看該作者
Extended atomicity through non-differentiability and its physical implications,In this chapter, atomicity is presented via quantum measure theory and some of its physical applications are highlighted. Precisely, the mathematical concept of (minimal) atomicity is extended from a physical perspective, based on the non-differentiability of motion curves.
23#
發(fā)表于 2025-3-25 13:55:26 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:23 | 只看該作者
http://image.papertrans.cn/b/image/164805.jpg
25#
發(fā)表于 2025-3-25 22:14:24 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:53 | 只看該作者
Book 2019lications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, a
27#
發(fā)表于 2025-3-26 06:32:58 | 只看該作者
Book 2019The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potentialapplications in life sciences, are opened..
28#
發(fā)表于 2025-3-26 09:29:45 | 只看該作者
On a multifractal theory of motion in a non-differentiable space: Toward a possible multifractal th
29#
發(fā)表于 2025-3-26 15:58:31 | 只看該作者
30#
發(fā)表于 2025-3-26 20:47:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
行唐县| 黑水县| 鄂伦春自治旗| 桃江县| 余江县| 吉首市| 邹城市| 铜陵市| 台东县| 孝昌县| 观塘区| 鲁山县| 广宗县| 永丰县| 阜康市| 全椒县| 剑阁县| 巴楚县| 伊春市| 苍溪县| 措勤县| 和平区| 安徽省| 苍溪县| 罗田县| 南乐县| 海门市| 富顺县| 大竹县| 桂阳县| 鹤山市| 肇源县| 云林县| 伊金霍洛旗| 武山县| 永济市| 大石桥市| 平江县| 万荣县| 黄大仙区| 浑源县|