找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotics of Linear Differential Equations; M. H. Lantsman Book 2001 Springer Science+Business Media B.V. 2001 Operator theory.differenc

[復(fù)制鏈接]
樓主: Gullet
31#
發(fā)表于 2025-3-27 00:17:29 | 只看該作者
32#
發(fā)表于 2025-3-27 01:40:47 | 只看該作者
33#
發(fā)表于 2025-3-27 07:50:08 | 只看該作者
34#
發(fā)表于 2025-3-27 11:37:25 | 只看該作者
Metric Spaces,A space is a non-empty set (no matter how the nature of its elements). Thus, the concept of a space is the most general in mathematics. Instead of the term ., it is possible to use another synonyms as follows: . etc. In a space we may introduce the concept of an operator.
35#
發(fā)表于 2025-3-27 16:36:16 | 只看該作者
Asymptotic Spaces,The theory of asymptotic spaces is used for formal solution of an operator equation of the form . = .(.). Formal solution is the first (and may be very difficult) step of the total asymptotic solution of the equation. Since many different spaces are used for different problems, we consider this notion in an axiomatic form.
36#
發(fā)表于 2025-3-27 20:31:00 | 只看該作者
37#
發(fā)表于 2025-3-28 01:22:09 | 只看該作者
Power Order Growth Functions of the Complex Argument,In this chapter we consider functions of the power order of growth in a central sector . or in a sufficiently small sector .. on the complex plane.
38#
發(fā)表于 2025-3-28 04:27:35 | 只看該作者
Integrals,In this section we consider integrals the form.which are possible to solve using asymptotic methods. In some rare cases integrals considered may be find exactly. For example
39#
發(fā)表于 2025-3-28 07:24:11 | 只看該作者
40#
發(fā)表于 2025-3-28 13:56:50 | 只看該作者
Linear Differential Equations with Power Order Growth Coefficients on the Positive Semi-Axis,In chapters 10, 11 we consider linear differential equations on the positive semi-axis with power order growth coefficients of the form . where the coefficients ..(.) belong to a space . of type . or . (or to {Q} which is some more general. See Definitions 6.16, 6.17 and 6.20).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺义区| 翁牛特旗| 景德镇市| 浮梁县| 手游| 杨浦区| 花垣县| 湘乡市| 屯昌县| 耒阳市| 昌平区| 什邡市| 湟源县| 克拉玛依市| 平阳县| 镇江市| 康保县| 高陵县| 石狮市| 高碑店市| 聂荣县| 扎赉特旗| 景洪市| 辽宁省| 丰顺县| 泾源县| 常州市| 罗甸县| 基隆市| 南陵县| 卢氏县| 同德县| 金门县| 平潭县| 祁阳县| 泸州市| 石棉县| 岳阳市| 临泉县| 绥中县| 阿鲁科尔沁旗|