找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotics of Linear Differential Equations; M. H. Lantsman Book 2001 Springer Science+Business Media B.V. 2001 Operator theory.differenc

[復(fù)制鏈接]
樓主: Gullet
31#
發(fā)表于 2025-3-27 00:17:29 | 只看該作者
32#
發(fā)表于 2025-3-27 01:40:47 | 只看該作者
33#
發(fā)表于 2025-3-27 07:50:08 | 只看該作者
34#
發(fā)表于 2025-3-27 11:37:25 | 只看該作者
Metric Spaces,A space is a non-empty set (no matter how the nature of its elements). Thus, the concept of a space is the most general in mathematics. Instead of the term ., it is possible to use another synonyms as follows: . etc. In a space we may introduce the concept of an operator.
35#
發(fā)表于 2025-3-27 16:36:16 | 只看該作者
Asymptotic Spaces,The theory of asymptotic spaces is used for formal solution of an operator equation of the form . = .(.). Formal solution is the first (and may be very difficult) step of the total asymptotic solution of the equation. Since many different spaces are used for different problems, we consider this notion in an axiomatic form.
36#
發(fā)表于 2025-3-27 20:31:00 | 只看該作者
37#
發(fā)表于 2025-3-28 01:22:09 | 只看該作者
Power Order Growth Functions of the Complex Argument,In this chapter we consider functions of the power order of growth in a central sector . or in a sufficiently small sector .. on the complex plane.
38#
發(fā)表于 2025-3-28 04:27:35 | 只看該作者
Integrals,In this section we consider integrals the form.which are possible to solve using asymptotic methods. In some rare cases integrals considered may be find exactly. For example
39#
發(fā)表于 2025-3-28 07:24:11 | 只看該作者
40#
發(fā)表于 2025-3-28 13:56:50 | 只看該作者
Linear Differential Equations with Power Order Growth Coefficients on the Positive Semi-Axis,In chapters 10, 11 we consider linear differential equations on the positive semi-axis with power order growth coefficients of the form . where the coefficients ..(.) belong to a space . of type . or . (or to {Q} which is some more general. See Definitions 6.16, 6.17 and 6.20).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤城县| 朝阳区| 大冶市| 合阳县| 荣昌县| 巩留县| 马鞍山市| 雷山县| 惠东县| 孟津县| 临沂市| 芷江| 黄浦区| 五华县| 罗定市| 白山市| 确山县| 徐州市| 正阳县| 蕉岭县| 岑巩县| 盐津县| 宁蒗| 遵化市| 长宁区| 翼城县| 望江县| 永宁县| 钟山县| 门头沟区| 衡水市| 长沙县| 江川县| 乾安县| 含山县| 霞浦县| 前郭尔| 江口县| 故城县| 临桂县| 云安县|