找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotically Safe Gravity; From Spacetime Folia Alessia Benedetta Platania Book 2018 Springer Nature Switzerland AG 2018 Asymptotic Safet

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 13:14:47 | 只看該作者
12#
發(fā)表于 2025-3-23 16:56:39 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8 require the introduction of new physics. An exception is the Asymptotic Safety scenario for Quantum Gravity, which is based on pure Quantum Field Theory. It builds on the generalized notion of renormalizability naturally arising from the Wilsonian Renormalization Group.
13#
發(fā)表于 2025-3-23 20:41:46 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:26 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:29 | 只看該作者
Quantum Gravity on Foliated Spacetimesy requires the spacetime to be Lorentzian, the EAA is defined by means of a Euclidean path integral. In the context of Quantum Field Theory, the Lorentzian signature can be recovered by Wick-rotating all time-like quantities.
16#
發(fā)表于 2025-3-24 07:51:01 | 只看該作者
Conclusionsxed points of the renormalization group flow. On this basis, gravity may result in a finite and predictive quantum theory if its flow converges to a Non-Gaussian Fixed Point (NGFP) in the ultraviolet limit.
17#
發(fā)表于 2025-3-24 10:46:51 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8ell tested theory known as Standard Model (SM) of particle physics. Similarly, General Relativity provides a successful description of the gravitational interaction and most of its predictions have been confirmed by observations. Although Standard Model and General Relativity show a very good agreem
18#
發(fā)表于 2025-3-24 18:43:37 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8fected by unphysical ultraviolet divergences. For instance, a systematic study of scattering amplitudes in Quantum Electrodynamics show that, due to the singular high-energy behavior of the theory, Feynman diagrams containing loops result in an infinite contribution to the transition amplitude.
19#
發(fā)表于 2025-3-24 19:41:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全南县| 普格县| 若尔盖县| 晋州市| 疏附县| 视频| 呼和浩特市| 宣武区| 和平县| 张掖市| 来宾市| 商洛市| 苗栗市| 沽源县| 民丰县| 波密县| 禹州市| 阿鲁科尔沁旗| 临沭县| 沁源县| 乐陵市| 千阳县| 宁都县| 科技| 和龙市| 白山市| 郑州市| 博兴县| 博罗县| 元朗区| 万年县| 昭苏县| 喀喇| 临漳县| 邢台县| 财经| 新疆| 东宁县| 韶关市| 开平市| 翁源县|