找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotically Safe Gravity; From Spacetime Folia Alessia Benedetta Platania Book 2018 Springer Nature Switzerland AG 2018 Asymptotic Safet

[復制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 13:14:47 | 只看該作者
12#
發(fā)表于 2025-3-23 16:56:39 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8 require the introduction of new physics. An exception is the Asymptotic Safety scenario for Quantum Gravity, which is based on pure Quantum Field Theory. It builds on the generalized notion of renormalizability naturally arising from the Wilsonian Renormalization Group.
13#
發(fā)表于 2025-3-23 20:41:46 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:26 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:29 | 只看該作者
Quantum Gravity on Foliated Spacetimesy requires the spacetime to be Lorentzian, the EAA is defined by means of a Euclidean path integral. In the context of Quantum Field Theory, the Lorentzian signature can be recovered by Wick-rotating all time-like quantities.
16#
發(fā)表于 2025-3-24 07:51:01 | 只看該作者
Conclusionsxed points of the renormalization group flow. On this basis, gravity may result in a finite and predictive quantum theory if its flow converges to a Non-Gaussian Fixed Point (NGFP) in the ultraviolet limit.
17#
發(fā)表于 2025-3-24 10:46:51 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8ell tested theory known as Standard Model (SM) of particle physics. Similarly, General Relativity provides a successful description of the gravitational interaction and most of its predictions have been confirmed by observations. Although Standard Model and General Relativity show a very good agreem
18#
發(fā)表于 2025-3-24 18:43:37 | 只看該作者
https://doi.org/10.1007/978-1-4302-0327-8fected by unphysical ultraviolet divergences. For instance, a systematic study of scattering amplitudes in Quantum Electrodynamics show that, due to the singular high-energy behavior of the theory, Feynman diagrams containing loops result in an infinite contribution to the transition amplitude.
19#
發(fā)表于 2025-3-24 19:41:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:40 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 13:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
柳林县| 湄潭县| 滁州市| 焦作市| 沂水县| 颍上县| 荥阳市| 永善县| 襄汾县| 东山县| 抚顺市| 通州区| 资中县| 林州市| 秦皇岛市| 北票市| 阿克苏市| 苏尼特右旗| 巍山| 商南县| 夏邑县| 磴口县| 贵州省| 凤凰县| 宝清县| 崇信县| 齐河县| 长岭县| 积石山| 武平县| 昌宁县| 庆元县| 揭西县| 通江县| 武安市| 准格尔旗| 安龙县| 平山县| 金沙县| 宝兴县| 玉林市|