找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic, Algebraic and Geometric Aspects of Integrable Systems; In Honor of Nalini J Frank Nijhoff,Yang Shi,Da-jun Zhang Conference proc

[復制鏈接]
樓主: Pessimistic
31#
發(fā)表于 2025-3-26 23:29:39 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:56 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/b/image/163845.jpg
33#
發(fā)表于 2025-3-27 06:22:35 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:30 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:14 | 只看該作者
36#
發(fā)表于 2025-3-27 20:28:10 | 只看該作者
https://doi.org/10.1007/978-3-7091-4328-5gular rational solutions have appeared with different names in a variety of nonlinear systems, say, algebraic solitons, algebraic solitrary waves and lump solutions etc. More importantly, these nonsingular rational solutions have played a key role in the study of rogue waves. In the paper, we will d
37#
發(fā)表于 2025-3-28 01:31:29 | 只看該作者
Basic Concepts of Functional Analysis,of the Gauss hypergeometric equation to produce the Kummer hypergeometric equation with an irregular singularity at infinity. We show how to pass from solutions with power-like behaviour which are analytic in disks, to solutions with exponential behaviour which are analytic in sectors and have diver
38#
發(fā)表于 2025-3-28 04:36:37 | 只看該作者
Foundations of the Theory of Parthooddratic vector fields). Kahan’s method has attracted much interest due to the fact that it preserves many of the geometrical properties of the original continuous system. In particular, a large number of Hamiltonian systems of quadratic vector fields are known for which their Kahan discretization is
39#
發(fā)表于 2025-3-28 09:09:24 | 只看該作者
40#
發(fā)表于 2025-3-28 10:33:36 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 10:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
香港| 桐城市| 漾濞| 黄大仙区| 特克斯县| 昌吉市| 凯里市| 望江县| 鹤庆县| 兴化市| 溆浦县| 泗阳县| 孟州市| 比如县| 同江市| 阳西县| 抚远县| 河南省| 防城港市| 石家庄市| 昌吉市| 珲春市| 德昌县| 庆阳市| 双辽市| 连江县| 司法| 涡阳县| 溆浦县| 汨罗市| 边坝县| 华阴市| 西安市| 武川县| 克什克腾旗| 阜阳市| 西畴县| 广平县| 涟源市| 漯河市| 池州市|