找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic, Algebraic and Geometric Aspects of Integrable Systems; In Honor of Nalini J Frank Nijhoff,Yang Shi,Da-jun Zhang Conference proc

[復制鏈接]
樓主: Pessimistic
31#
發(fā)表于 2025-3-26 23:29:39 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:56 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/b/image/163845.jpg
33#
發(fā)表于 2025-3-27 06:22:35 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:30 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:14 | 只看該作者
36#
發(fā)表于 2025-3-27 20:28:10 | 只看該作者
https://doi.org/10.1007/978-3-7091-4328-5gular rational solutions have appeared with different names in a variety of nonlinear systems, say, algebraic solitons, algebraic solitrary waves and lump solutions etc. More importantly, these nonsingular rational solutions have played a key role in the study of rogue waves. In the paper, we will d
37#
發(fā)表于 2025-3-28 01:31:29 | 只看該作者
Basic Concepts of Functional Analysis,of the Gauss hypergeometric equation to produce the Kummer hypergeometric equation with an irregular singularity at infinity. We show how to pass from solutions with power-like behaviour which are analytic in disks, to solutions with exponential behaviour which are analytic in sectors and have diver
38#
發(fā)表于 2025-3-28 04:36:37 | 只看該作者
Foundations of the Theory of Parthooddratic vector fields). Kahan’s method has attracted much interest due to the fact that it preserves many of the geometrical properties of the original continuous system. In particular, a large number of Hamiltonian systems of quadratic vector fields are known for which their Kahan discretization is
39#
發(fā)表于 2025-3-28 09:09:24 | 只看該作者
40#
發(fā)表于 2025-3-28 10:33:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 14:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
改则县| 阳西县| 佳木斯市| 沾益县| 获嘉县| 大关县| 修文县| 光山县| 林周县| 新乡市| 普兰县| 临高县| 宝兴县| 丹寨县| 盐池县| 龙泉市| 大悟县| 秭归县| 上犹县| 正蓝旗| 睢宁县| 门头沟区| 万荣县| 兰州市| 海南省| 崇明县| 包头市| 宁强县| 都江堰市| 文成县| 盐边县| 南汇区| 麻城市| 柘荣县| 合肥市| 东乌| 长宁区| 游戏| 泰和县| 旬阳县| 佳木斯市|