找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters; Hans G. Kaper,Marc Garbey,Gail W. Pieper Boo

[復制鏈接]
樓主: 復雜
31#
發(fā)表于 2025-3-27 00:04:13 | 只看該作者
Asymptotics of the Thual-Fauve Pulselike solutions that decay exponentially at infinity. The branch of solutions crosses a subcritical turning point; past that critical value, a small perturbation of the pulse evolves into the same pulse, up to translations in space and in phase.
32#
發(fā)表于 2025-3-27 01:44:43 | 只看該作者
33#
發(fā)表于 2025-3-27 08:58:13 | 只看該作者
34#
發(fā)表于 2025-3-27 12:41:41 | 只看該作者
https://doi.org/10.1007/978-1-4615-1135-9We describe the results of asymptotic analysis for a class of singularly perturbed ODEs that arise in the theory of water waves. The emphasis is on the question of existence of solitary waves and the phenomenon of exponentially small splitting of homoclinic orbits.
35#
發(fā)表于 2025-3-27 13:43:21 | 只看該作者
Domain Decomposition as a Mechanism for Using Asymptotic MethodsThis paper summarizes some recent advances in numerical analysis for PDEs, particularly those in algebraic domain decomposition techniques, and demonstrates how such methods may be combined with asymptotic methods to provide robust and effective solvers.
36#
發(fā)表于 2025-3-27 21:38:33 | 只看該作者
Factorization of the Advection-Diffusion Operator and Domain Decomposition MethodWe propose an iterative algorithm that involves, at each step, the solving of the advection-diffusion equation on each subdomain. Each subproblem is subject to boundary conditions issued from the approximate factorization of the advection-diffusion operator. The method is more efficient as the viscosity decreases. Numerical tests are shown.
37#
發(fā)表于 2025-3-28 01:59:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:17:08 | 只看該作者
https://doi.org/10.1007/978-94-011-1810-1Computer; algorithms; calculus; differential equation; modeling; numerical methods; partial differential e
39#
發(fā)表于 2025-3-28 08:58:57 | 只看該作者
40#
發(fā)表于 2025-3-28 11:16:11 | 只看該作者
Nato Science Series C:http://image.papertrans.cn/b/image/163843.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泰来县| 资兴市| 饶平县| 曲松县| 萨嘎县| 彰化市| 远安县| 交口县| 利津县| 望城县| 祁门县| 肇东市| 松阳县| 高密市| 宜黄县| 郴州市| 盐山县| 黄龙县| 桃源县| 朝阳区| 瓮安县| 平远县| 仲巴县| 同江市| 巩留县| 新丰县| 于田县| 贺兰县| 白玉县| 界首市| 天镇县| 北碚区| 西城区| 南昌县| 外汇| 宾阳县| 河北区| 双桥区| 景泰县| 沅江市| 渝北区|