找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters; Hans G. Kaper,Marc Garbey,Gail W. Pieper Boo

[復(fù)制鏈接]
樓主: 復(fù)雜
31#
發(fā)表于 2025-3-27 00:04:13 | 只看該作者
Asymptotics of the Thual-Fauve Pulselike solutions that decay exponentially at infinity. The branch of solutions crosses a subcritical turning point; past that critical value, a small perturbation of the pulse evolves into the same pulse, up to translations in space and in phase.
32#
發(fā)表于 2025-3-27 01:44:43 | 只看該作者
33#
發(fā)表于 2025-3-27 08:58:13 | 只看該作者
34#
發(fā)表于 2025-3-27 12:41:41 | 只看該作者
https://doi.org/10.1007/978-1-4615-1135-9We describe the results of asymptotic analysis for a class of singularly perturbed ODEs that arise in the theory of water waves. The emphasis is on the question of existence of solitary waves and the phenomenon of exponentially small splitting of homoclinic orbits.
35#
發(fā)表于 2025-3-27 13:43:21 | 只看該作者
Domain Decomposition as a Mechanism for Using Asymptotic MethodsThis paper summarizes some recent advances in numerical analysis for PDEs, particularly those in algebraic domain decomposition techniques, and demonstrates how such methods may be combined with asymptotic methods to provide robust and effective solvers.
36#
發(fā)表于 2025-3-27 21:38:33 | 只看該作者
Factorization of the Advection-Diffusion Operator and Domain Decomposition MethodWe propose an iterative algorithm that involves, at each step, the solving of the advection-diffusion equation on each subdomain. Each subproblem is subject to boundary conditions issued from the approximate factorization of the advection-diffusion operator. The method is more efficient as the viscosity decreases. Numerical tests are shown.
37#
發(fā)表于 2025-3-28 01:59:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:17:08 | 只看該作者
https://doi.org/10.1007/978-94-011-1810-1Computer; algorithms; calculus; differential equation; modeling; numerical methods; partial differential e
39#
發(fā)表于 2025-3-28 08:58:57 | 只看該作者
40#
發(fā)表于 2025-3-28 11:16:11 | 只看該作者
Nato Science Series C:http://image.papertrans.cn/b/image/163843.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通化市| 松阳县| 仙居县| 黄山市| 剑阁县| 巩留县| 娄烦县| 嵩明县| 西林县| 永胜县| 卢氏县| 永济市| 太白县| 秭归县| 牙克石市| 惠东县| 汪清县| 旬邑县| 祁阳县| 郯城县| 中西区| 安达市| 易门县| 丹东市| 竹溪县| 韩城市| 故城县| 肥城市| 江北区| 嘉善县| 云阳县| 连州市| 民县| 曲阳县| 含山县| 偃师市| 玉环县| 辽阳县| 桐柏县| 天门市| 翼城县|