找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters; Hans G. Kaper,Marc Garbey,Gail W. Pieper Boo

[復(fù)制鏈接]
樓主: 復(fù)雜
31#
發(fā)表于 2025-3-27 00:04:13 | 只看該作者
Asymptotics of the Thual-Fauve Pulselike solutions that decay exponentially at infinity. The branch of solutions crosses a subcritical turning point; past that critical value, a small perturbation of the pulse evolves into the same pulse, up to translations in space and in phase.
32#
發(fā)表于 2025-3-27 01:44:43 | 只看該作者
33#
發(fā)表于 2025-3-27 08:58:13 | 只看該作者
34#
發(fā)表于 2025-3-27 12:41:41 | 只看該作者
https://doi.org/10.1007/978-1-4615-1135-9We describe the results of asymptotic analysis for a class of singularly perturbed ODEs that arise in the theory of water waves. The emphasis is on the question of existence of solitary waves and the phenomenon of exponentially small splitting of homoclinic orbits.
35#
發(fā)表于 2025-3-27 13:43:21 | 只看該作者
Domain Decomposition as a Mechanism for Using Asymptotic MethodsThis paper summarizes some recent advances in numerical analysis for PDEs, particularly those in algebraic domain decomposition techniques, and demonstrates how such methods may be combined with asymptotic methods to provide robust and effective solvers.
36#
發(fā)表于 2025-3-27 21:38:33 | 只看該作者
Factorization of the Advection-Diffusion Operator and Domain Decomposition MethodWe propose an iterative algorithm that involves, at each step, the solving of the advection-diffusion equation on each subdomain. Each subproblem is subject to boundary conditions issued from the approximate factorization of the advection-diffusion operator. The method is more efficient as the viscosity decreases. Numerical tests are shown.
37#
發(fā)表于 2025-3-28 01:59:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:17:08 | 只看該作者
https://doi.org/10.1007/978-94-011-1810-1Computer; algorithms; calculus; differential equation; modeling; numerical methods; partial differential e
39#
發(fā)表于 2025-3-28 08:58:57 | 只看該作者
40#
發(fā)表于 2025-3-28 11:16:11 | 只看該作者
Nato Science Series C:http://image.papertrans.cn/b/image/163843.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贺州市| 农安县| 军事| 芦溪县| 吴川市| 万全县| 昌乐县| 榕江县| 昌宁县| 双流县| 兴安县| 南华县| 甘洛县| 济源市| 饶平县| 大同市| 景泰县| 湖州市| 台南市| 北碚区| 宝清县| 区。| 阳西县| 惠安县| 富顺县| 中西区| 交城县| 醴陵市| 顺义区| 平邑县| 海城市| 新丰县| 托里县| 平潭县| 揭西县| 沙坪坝区| 双流县| 纳雍县| 桃园市| 肃北| 高尔夫|