找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Statistical Inference for Time Series; Masanobu Taniguchi,Yoshihide Kakizawa Book 2000 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: Perforation
11#
發(fā)表于 2025-3-23 10:43:06 | 只看該作者
12#
發(fā)表于 2025-3-23 15:28:56 | 只看該作者
Lecture Notes in Computer Sciencestochastic processes will be reviewed. Because the statistical analysis for stochastic processes largely relies on the asymptotic theory, we also explain some useful limit theorems and central limit theorems. We have placed some fundamental results of mathematics, probability, and statistics in the Appendix.
13#
發(fā)表于 2025-3-23 22:05:04 | 只看該作者
Elements of Stochastic Processes,stochastic processes will be reviewed. Because the statistical analysis for stochastic processes largely relies on the asymptotic theory, we also explain some useful limit theorems and central limit theorems. We have placed some fundamental results of mathematics, probability, and statistics in the Appendix.
14#
發(fā)表于 2025-3-23 22:36:48 | 只看該作者
15#
發(fā)表于 2025-3-24 02:32:24 | 只看該作者
0172-7397 tion principle, and saddlepoint approximation. Because it is d- ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory.978-1-4612-7028-7978-1-4612-1162-4Series ISSN 0172-7397 Series E-ISSN 2197-568X
16#
發(fā)表于 2025-3-24 09:21:51 | 只看該作者
Asymptotic Theory of Estimation and Testing for Stochastic Processes,odels and the asymptotic estimation theory based on the conditional least squares estimator and maximum likelihood estimator (MLE). We address the problem of statistical model selection in general fashion. Also the asymptotic theory for nonergodic models is mentioned. Recently much attention has bee
17#
發(fā)表于 2025-3-24 12:07:03 | 只看該作者
Asymptotic Theory for Long-Memory Processes,1968, 1969a, b)) claimed that Hurst’s findings could be modeled by them. Since then, a lot of probabilistic and statistical methods have been brought in long-memory processes (see Beran (1994a) and Robinson (1994a)). Interestingly, the illuminated results are often different from those for ordinary
18#
發(fā)表于 2025-3-24 17:57:57 | 只看該作者
19#
發(fā)表于 2025-3-24 22:28:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁牛特旗| 中山市| 旺苍县| 巴林右旗| 柘荣县| 大洼县| 邯郸市| 辽中县| 汤阴县| 社会| 怀远县| 如东县| 鸡东县| 突泉县| 鸡西市| 灵台县| 开化县| 托克托县| 沙湾县| 元阳县| 县级市| 冷水江市| 安徽省| 罗定市| 五寨县| 玛多县| 潮州市| 二连浩特市| 分宜县| 安泽县| 永修县| 泸定县| 淳安县| 中江县| 青河县| 伊宁市| 翁牛特旗| 宁安市| 通河县| 桐城市| 嘉善县|