找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Volume I Vladimir Maz’ya,Serguei Nazarov,Boris A. Pl

[復(fù)制鏈接]
樓主: monster
11#
發(fā)表于 2025-3-23 10:20:33 | 只看該作者
0255-0156 of elliptic boundary value problems in singularly perturbed domains. This first volume is devoted to domains whose boundary is smooth in the neighborhood of finitely many conical points. In particular, the theory encompasses the important case of domains with small holes. The second volume, on the
12#
發(fā)表于 2025-3-23 16:40:38 | 只看該作者
13#
發(fā)表于 2025-3-23 20:01:47 | 只看該作者
14#
發(fā)表于 2025-3-24 00:42:49 | 只看該作者
Dirichlet and Neumann Problems for the Laplace Operator in Domains with Corners and Cone Verticesllustrates the general theory of elliptic boundary value problems in domains with cone vertices, which is briefly presented in Chapter 3. (Therefore we refrain from using expansions by the eigenfunctions of the Beltrami operator, which lead to the same results in the case of the Poisson equation.)
15#
發(fā)表于 2025-3-24 04:48:54 | 只看該作者
Elliptic Boundary Value Problems in Domains with Smooth Boundaries, in a Cylinder, and in Domains wis. However, in contrast to the first part we consider here general elliptic boundary value problems. The reader who is interested only in concrete problems of mathematical physics may restrict himself to a superficial reading of Chapters 3–5.
16#
發(fā)表于 2025-3-24 07:43:53 | 只看該作者
17#
發(fā)表于 2025-3-24 14:44:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:31:48 | 只看該作者
Martin Berger,Kohei Honda,Nobuko Yoshidain perturbed in the neighborhood of a corner. The necessary facts concerning behaviour of the solutions of problems of the theory of elasticity in a neighborhood of the sector vertex are put together in 8.5.
19#
發(fā)表于 2025-3-24 20:17:52 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 08:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新化县| 耒阳市| 蒙山县| 涿鹿县| 青河县| 青川县| 中山市| 襄汾县| 昌都县| 土默特右旗| 福清市| 滨海县| 大荔县| 临安市| 加查县| 林甸县| 宣汉县| 曲周县| 台山市| 克拉玛依市| 桦甸市| 慈利县| 泾阳县| 体育| 叶城县| 乌拉特中旗| 哈巴河县| 增城市| 丽江市| 阿勒泰市| 定州市| 广昌县| 金沙县| 蒙自县| 潼关县| 天柱县| 师宗县| 眉山市| 靖远县| 海门市| 临海市|