找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II; Volume II Vladimir Maz’ya,Serguei Nazarov,

[復(fù)制鏈接]
樓主: Truman
11#
發(fā)表于 2025-3-23 11:18:03 | 只看該作者
12#
發(fā)表于 2025-3-23 16:09:06 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:15 | 只看該作者
General Elliptic Problems in Thin Domains, we provide compatibility conditions for the two first problems. In the general case, the role of the third limit problem can be played by a problem with small parameter by the derivatives of higher order, algebraic or differential equations on the boundary of a section, etc. (Section 16.3 contains the corresponding examples.)
14#
發(fā)表于 2025-3-23 22:27:34 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:17 | 只看該作者
16#
發(fā)表于 2025-3-24 07:43:52 | 只看該作者
Homogenization of a Differential Operator on a Fine Periodic Net of Curvesre-cloth. On its segments there are given some ordinary second order differential equations. At the nodes, the sum of the flows rates is equal to zero. Finally, we impose the homogeneous Dirichlet condition at the boundary points.
17#
發(fā)表于 2025-3-24 12:13:03 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/b/image/163835.jpg
18#
發(fā)表于 2025-3-24 15:30:04 | 只看該作者
https://doi.org/10.1007/978-3-0348-8432-7Boundary value problem; Partial differential equations; difference equation; differential equation; diff
19#
發(fā)表于 2025-3-24 21:00:28 | 只看該作者
978-3-0348-9564-4Birkh?user Verlag 2000
20#
發(fā)表于 2025-3-25 00:31:28 | 只看該作者
A New Foundation for Finitary CorecursionIn this chapter we begin to study the asymptotics of solutions to elliptic problems in domains perturbed near multidimensional singularities of the boundary. As such singularities, one takes edges of various dimensions on the boundary of an n-dimensional domain Ω or smooth .-dimensional submanifolds within Ω, 1 ≤ . ≤ . — 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜陵市| 铜山县| 河源市| 桂平市| 静宁县| 陇南市| 嘉鱼县| 瑞安市| 皮山县| 钟祥市| 芮城县| 剑河县| 太康县| 东城区| 合水县| 米脂县| 左云县| 潞西市| 平罗县| 太康县| 竹溪县| 门头沟区| 曲靖市| 呼和浩特市| 遵义县| 图木舒克市| 北辰区| 淮阳县| 界首市| 饶平县| 阿克苏市| 高台县| 宜宾县| 阳山县| 颍上县| 徐州市| 乌审旗| 海城市| 洞头县| 康马县| 万盛区|