找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II; Volume II Vladimir Maz’ya,Serguei Nazarov,

[復(fù)制鏈接]
樓主: Truman
11#
發(fā)表于 2025-3-23 11:18:03 | 只看該作者
12#
發(fā)表于 2025-3-23 16:09:06 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:15 | 只看該作者
General Elliptic Problems in Thin Domains, we provide compatibility conditions for the two first problems. In the general case, the role of the third limit problem can be played by a problem with small parameter by the derivatives of higher order, algebraic or differential equations on the boundary of a section, etc. (Section 16.3 contains the corresponding examples.)
14#
發(fā)表于 2025-3-23 22:27:34 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:17 | 只看該作者
16#
發(fā)表于 2025-3-24 07:43:52 | 只看該作者
Homogenization of a Differential Operator on a Fine Periodic Net of Curvesre-cloth. On its segments there are given some ordinary second order differential equations. At the nodes, the sum of the flows rates is equal to zero. Finally, we impose the homogeneous Dirichlet condition at the boundary points.
17#
發(fā)表于 2025-3-24 12:13:03 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/b/image/163835.jpg
18#
發(fā)表于 2025-3-24 15:30:04 | 只看該作者
https://doi.org/10.1007/978-3-0348-8432-7Boundary value problem; Partial differential equations; difference equation; differential equation; diff
19#
發(fā)表于 2025-3-24 21:00:28 | 只看該作者
978-3-0348-9564-4Birkh?user Verlag 2000
20#
發(fā)表于 2025-3-25 00:31:28 | 只看該作者
A New Foundation for Finitary CorecursionIn this chapter we begin to study the asymptotics of solutions to elliptic problems in domains perturbed near multidimensional singularities of the boundary. As such singularities, one takes edges of various dimensions on the boundary of an n-dimensional domain Ω or smooth .-dimensional submanifolds within Ω, 1 ≤ . ≤ . — 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄城县| 井研县| 红原县| 霍山县| 宜川县| 澄江县| 赣州市| 察哈| 苗栗县| 贞丰县| 美姑县| 扶沟县| 聂荣县| 沭阳县| 五华县| 香港 | 余庆县| 嘉定区| 吉隆县| 郑州市| 离岛区| 新密市| 南丹县| 河曲县| 嘉定区| 浙江省| 电白县| 宜都市| 来宾市| 南部县| 江川县| 自贡市| 巩留县| 滦平县| 青冈县| 泗水县| 阜南县| 平江县| 永平县| 邯郸县| 高淳县|