找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Methods in Probability and Statistics with Applications; N. Balakrishnan,I. A. Ibragimov,V. B. Nevzorov Book 2001 Springer Scie

[復(fù)制鏈接]
樓主: Clientele
31#
發(fā)表于 2025-3-26 23:05:55 | 只看該作者
Time Reversal of Diffusion Processes in Hilbert Spaces and ManifoldsWe describe some results of the theory of diffusion processes in infinite dimensional Hilbert spaces and manifolds and apply them to investigation of invariant measures and time reversal of diffusion processes.
32#
發(fā)表于 2025-3-27 02:55:44 | 只看該作者
33#
發(fā)表于 2025-3-27 08:02:19 | 只看該作者
34#
發(fā)表于 2025-3-27 12:52:02 | 只看該作者
Long-Time Behavior of Multi-Particle Markovian ModelsWe find convergence time to equilibrium for wide classes of large multi-Particle Markovian systems. We show that if a “one-Particle” state space is large, then the long-time behavior of the multi-Particle Markovian system strongly depends on the type of stochastic evolution of a single Particle.
35#
發(fā)表于 2025-3-27 16:05:43 | 只看該作者
Applications of Infinite-Dimensional Gaussian IntegralsIn this chapter, the difference between an absolute moment of any Gaussian measure on the Hilbert space and the same moment of its projection onto some finite-dimensional subspace is evaluated.
36#
發(fā)表于 2025-3-27 19:41:31 | 只看該作者
37#
發(fā)表于 2025-3-28 00:01:10 | 只看該作者
38#
發(fā)表于 2025-3-28 04:23:21 | 只看該作者
A Local Limit Theorem for Stationary Processes in the Domain of Attraction of a Normal DistributionIn this chapter, we prove local limit theorems for Gibbs-Markov processes in the domain of attraction of normal distributions.
39#
發(fā)表于 2025-3-28 09:01:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:07:04 | 只看該作者
On Finite-Dimensional Archimedean Copulas necessary and sufficient conditions for the generators of Archimedean copulas and give some properties of degenerate finite dimensional Archimedean copulas. Some examples of degenerate finite dimensional Archimedean copulas are also represented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤壁市| 平江县| 龙江县| 乐东| 贵州省| 抚松县| 额尔古纳市| 钦州市| 满洲里市| 衡南县| 罗田县| 辉南县| 台东市| 陇川县| 合水县| 中山市| 胶州市| 镇平县| 农安县| 崇信县| 滨州市| 游戏| 荔浦县| 南安市| 宁蒗| 郴州市| 乐山市| 汾阳市| 巴塘县| 阿拉善右旗| 沙田区| 池州市| 嘉黎县| 彭水| 都兰县| 清原| 黎城县| 兴城市| 衢州市| 新密市| 化州市|