找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Methods in Probability and Statistics with Applications; N. Balakrishnan,I. A. Ibragimov,V. B. Nevzorov Book 2001 Springer Scie

[復(fù)制鏈接]
樓主: Clientele
31#
發(fā)表于 2025-3-26 23:05:55 | 只看該作者
Time Reversal of Diffusion Processes in Hilbert Spaces and ManifoldsWe describe some results of the theory of diffusion processes in infinite dimensional Hilbert spaces and manifolds and apply them to investigation of invariant measures and time reversal of diffusion processes.
32#
發(fā)表于 2025-3-27 02:55:44 | 只看該作者
33#
發(fā)表于 2025-3-27 08:02:19 | 只看該作者
34#
發(fā)表于 2025-3-27 12:52:02 | 只看該作者
Long-Time Behavior of Multi-Particle Markovian ModelsWe find convergence time to equilibrium for wide classes of large multi-Particle Markovian systems. We show that if a “one-Particle” state space is large, then the long-time behavior of the multi-Particle Markovian system strongly depends on the type of stochastic evolution of a single Particle.
35#
發(fā)表于 2025-3-27 16:05:43 | 只看該作者
Applications of Infinite-Dimensional Gaussian IntegralsIn this chapter, the difference between an absolute moment of any Gaussian measure on the Hilbert space and the same moment of its projection onto some finite-dimensional subspace is evaluated.
36#
發(fā)表于 2025-3-27 19:41:31 | 只看該作者
37#
發(fā)表于 2025-3-28 00:01:10 | 只看該作者
38#
發(fā)表于 2025-3-28 04:23:21 | 只看該作者
A Local Limit Theorem for Stationary Processes in the Domain of Attraction of a Normal DistributionIn this chapter, we prove local limit theorems for Gibbs-Markov processes in the domain of attraction of normal distributions.
39#
發(fā)表于 2025-3-28 09:01:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:07:04 | 只看該作者
On Finite-Dimensional Archimedean Copulas necessary and sufficient conditions for the generators of Archimedean copulas and give some properties of degenerate finite dimensional Archimedean copulas. Some examples of degenerate finite dimensional Archimedean copulas are also represented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
界首市| 温泉县| 盘锦市| 理塘县| 隆回县| 三原县| 太白县| 蒙山县| 六安市| 正安县| 奈曼旗| 靖边县| 桑植县| 苏州市| 宁强县| 湖州市| 隆化县| 浦北县| 黄龙县| 固镇县| 易门县| 鄂托克前旗| 河源市| 鲜城| 尉氏县| 安泽县| 监利县| 轮台县| 阿拉善右旗| 隆昌县| 读书| 东乡县| 亚东县| 体育| 宜兰市| 苍南县| 潜江市| 万山特区| 霍林郭勒市| 德清县| 东光县|