找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Expansion of a Partition Function Related to the Sinh-model; Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski Book 2016 Springer

[復(fù)制鏈接]
樓主: 不要提吃飯
11#
發(fā)表于 2025-3-23 11:25:50 | 只看該作者
12#
發(fā)表于 2025-3-23 14:55:13 | 只看該作者
0921-3767 es, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields..978-3-319-81499-5978-3-319-33379-3Series ISSN 0921-3767 Series E-ISSN 2352-3905
13#
發(fā)表于 2025-3-23 21:00:11 | 只看該作者
Book 2016 of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields..
14#
發(fā)表于 2025-3-24 02:13:12 | 只看該作者
Asymptotic Expansion of a Partition Function Related to the Sinh-model
15#
發(fā)表于 2025-3-24 05:10:45 | 只看該作者
,Asymptotic Expansion of ,—The Schwinger–Dyson Equation Approach,inally, upon integrating the relation (.) so as to to interpolate the partition function between a Gaussian and a general potential, we will get the .-dependent large-. asymptotic expansion of . in Proposition?..
16#
發(fā)表于 2025-3-24 07:02:09 | 只看該作者
,The Riemann–Hilbert Approach to the Inversion of ,,n of this vector problem demands the resolution of a . matrix Riemann–Hilbert problem for an auxiliary matrix .. We construct the solution to this problem, for .-large enough, in Section . and then exhibit some of the overall properties of the solution . in Section .. We shall build on these results
17#
發(fā)表于 2025-3-24 12:37:14 | 只看該作者
The Operators , ,ection . we shall build on this decomposition so as to show that there arise two regimes for the large-. asymptotic behaviour of . namely when.In addition to providing the associated asymptotic expansions, we shall also establish certain properties of the remainders which will turn out to be crucial
18#
發(fā)表于 2025-3-24 17:00:02 | 只看該作者
19#
發(fā)表于 2025-3-24 19:50:05 | 只看該作者
20#
發(fā)表于 2025-3-24 23:47:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北市| 平武县| 福鼎市| 嘉荫县| 九江县| 徐汇区| 原平市| 罗田县| 马龙县| 西安市| 黄大仙区| 昭觉县| 正宁县| 长海县| 张家川| 元氏县| 应用必备| 屯门区| 基隆市| 厦门市| 安新县| 武山县| 三亚市| 依兰县| 陇西县| 建平县| 醴陵市| 怀安县| 依兰县| 梅州市| 克拉玛依市| 怀远县| 丹巴县| 崇信县| 柳河县| 朝阳区| 庆阳市| 云阳县| 乐业县| 类乌齐县| 招远市|