找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Expansion of a Partition Function Related to the Sinh-model; Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski Book 2016 Springer

[復制鏈接]
樓主: 不要提吃飯
11#
發(fā)表于 2025-3-23 11:25:50 | 只看該作者
12#
發(fā)表于 2025-3-23 14:55:13 | 只看該作者
0921-3767 es, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields..978-3-319-81499-5978-3-319-33379-3Series ISSN 0921-3767 Series E-ISSN 2352-3905
13#
發(fā)表于 2025-3-23 21:00:11 | 只看該作者
Book 2016 of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields..
14#
發(fā)表于 2025-3-24 02:13:12 | 只看該作者
Asymptotic Expansion of a Partition Function Related to the Sinh-model
15#
發(fā)表于 2025-3-24 05:10:45 | 只看該作者
,Asymptotic Expansion of ,—The Schwinger–Dyson Equation Approach,inally, upon integrating the relation (.) so as to to interpolate the partition function between a Gaussian and a general potential, we will get the .-dependent large-. asymptotic expansion of . in Proposition?..
16#
發(fā)表于 2025-3-24 07:02:09 | 只看該作者
,The Riemann–Hilbert Approach to the Inversion of ,,n of this vector problem demands the resolution of a . matrix Riemann–Hilbert problem for an auxiliary matrix .. We construct the solution to this problem, for .-large enough, in Section . and then exhibit some of the overall properties of the solution . in Section .. We shall build on these results
17#
發(fā)表于 2025-3-24 12:37:14 | 只看該作者
The Operators , ,ection . we shall build on this decomposition so as to show that there arise two regimes for the large-. asymptotic behaviour of . namely when.In addition to providing the associated asymptotic expansions, we shall also establish certain properties of the remainders which will turn out to be crucial
18#
發(fā)表于 2025-3-24 17:00:02 | 只看該作者
19#
發(fā)表于 2025-3-24 19:50:05 | 只看該作者
20#
發(fā)表于 2025-3-24 23:47:48 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 13:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
喜德县| 绥芬河市| 吉木萨尔县| 鸡东县| 永靖县| 铜鼓县| 泰顺县| 陇西县| 民丰县| 平邑县| 湖北省| 慈溪市| 湟中县| 都匀市| 昭觉县| 哈密市| 道孚县| 西畴县| 黄石市| 黄山市| 甘孜| 都匀市| 辽源市| 普兰店市| 嘉荫县| 高雄市| 枝江市| 石林| 大庆市| 内乡县| 寻甸| 孟津县| 梓潼县| SHOW| 滁州市| 霍山县| 大田县| 无为县| 邓州市| 平潭县| 辽阳县|