找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency; Concepts and Higher Masafumi Akahira,Kei

[復(fù)制鏈接]
樓主: LANK
11#
發(fā)表于 2025-3-23 10:35:17 | 只看該作者
12#
發(fā)表于 2025-3-23 16:19:17 | 只看該作者
Book 1981Our investigation has two main purposes. Firstly, we discuss higher order asymptotic efficiency of estimators in regular situa- tions. In these situations it is known that the maximum likelihood estimator (MLE) is asymptotically efficient in some (not always specified) sense. However, there exists h
13#
發(fā)表于 2025-3-23 19:20:56 | 只看該作者
Foundations of Java for ABAP Programmerscond order asymptotically efficient but not always third order asymptotically efficient in the regular case. Further, it shall be seen that the asymptotic efficiency (including higher order cases) may be systematically discussed by discretized likelihood methods.
14#
發(fā)表于 2025-3-24 01:42:41 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:08 | 只看該作者
https://doi.org/10.1007/978-1-4302-0140-3ation. Recently Chibisov [15], [16] has shown that a maximum likelihood estimator (MLE) is second order asymptotically efficient in this sense. Pfanzagl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second or
16#
發(fā)表于 2025-3-24 07:57:51 | 只看該作者
Inner, Nested, and Anonymous Classeserminology) and also by J.K.Ghosh and K.Subramanyam [21], for cases where sufficient statistics exist. In this section we shall establish more general results for the multiparameter exponential family, introducing a differential operator, and show that (modified) MLE is always optimal up to the orde
17#
發(fā)表于 2025-3-24 14:32:55 | 只看該作者
Foundations of Java for ABAP Programmersonsider a solution.of the discretized likelihood equation.where a.(θ, r) is chosen so that.is asymptotically median unbiased (AMU). Then the solution.is called a discretized likelihood estimator (DLE). In this chapter it is shown in comparison with DLE that a maximum likelihood estimator (MLE) is se
18#
發(fā)表于 2025-3-24 14:53:04 | 只看該作者
Lecture Notes in Statisticshttp://image.papertrans.cn/b/image/163799.jpg
19#
發(fā)表于 2025-3-24 21:02:51 | 只看該作者
Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency978-1-4612-5927-5Series ISSN 0930-0325 Series E-ISSN 2197-7186
20#
發(fā)表于 2025-3-25 03:09:36 | 只看該作者
https://doi.org/10.1007/978-1-4612-5927-5Asymptotische Wirksamkeit; Estimator; Likelihood; Sch?tzung (Statistik); linear regression
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安平县| 井研县| 杭州市| 噶尔县| 洞口县| 甘孜| 井陉县| 炉霍县| 青阳县| 林西县| 那曲县| 张家港市| 龙陵县| 邢台县| 黔南| 上林县| 合阳县| 曲阳县| 广水市| 绥江县| 庄浪县| 克什克腾旗| 江山市| 兰考县| 贡觉县| 大邑县| 永胜县| 龙门县| 南川市| 濮阳市| 蚌埠市| 屯留县| 运城市| 毕节市| 松滋市| 灌阳县| 蛟河市| 平山县| 湘潭县| 隆化县| 浏阳市|