找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Combinatorics with Applications to Mathematical Physics; A European Mathemati Anatoly M. Vershik,Yuri Yakubovich Book 2003 Sprin

[復(fù)制鏈接]
樓主: 棕櫚等
11#
發(fā)表于 2025-3-23 12:33:14 | 只看該作者
An introduction to harmonic analysis on the infinite symmetric groupThe aim of the present survey paper is to provide an accessible introduction to a new chapter of representation theory—harmonic analysis for ..
12#
發(fā)表于 2025-3-23 16:36:16 | 只看該作者
Characters of symmetric groups and free cumulantsWe investigate Kerov’s formula expressing the normalized irreducible characters of symmetric groups evaluated on a cycle, in terms of the free cumulants of the associated Young diagrams.
13#
發(fā)表于 2025-3-23 21:06:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:07:38 | 只看該作者
Advances in Intelligent and Soft Computings, their representations, characters and other attributes as group rank grows to infinity. Another kind of questions (in the spirit of infinite dimensional analysis) deal with properties of infinite dimensional analogues of classical groups. Let us discuss, for instanse, the most simple nontrivial e
15#
發(fā)表于 2025-3-24 05:38:49 | 只看該作者
16#
發(fā)表于 2025-3-24 07:01:36 | 只看該作者
Foundations of Intelligent Systemst of the evaluation modules over the algebras H .x and H..The module . depends on two partitions λ of . and . of ., and on two complex numbers.There is a canonical operator . acting in ., it corresponds to the Yang .-matrix.The algebra H. contains the symmetric group algebra ? S. as a subalgebra, an
17#
發(fā)表于 2025-3-24 13:55:55 | 只看該作者
Asymptotic Combinatorics with Applications to Mathematical Physics978-3-540-44890-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:49:25 | 只看該作者
19#
發(fā)表于 2025-3-24 21:02:18 | 只看該作者
https://doi.org/10.1007/3-540-44890-XMeasure; Probability theory; Riemann-Hilbert problem; Young diagram; characters of the representations; m
20#
發(fā)表于 2025-3-25 00:31:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 15:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽中县| 保靖县| 玉门市| 稻城县| 乐清市| 简阳市| 饶阳县| 乌鲁木齐市| 琼海市| 西平县| 马龙县| 荣昌县| 宝丰县| 望江县| 新余市| 松原市| 保定市| 六枝特区| 麻城市| 镇赉县| 富源县| 盘山县| 织金县| 苏尼特左旗| 定兴县| 威海市| 隆子县| 定襄县| 广水市| 茶陵县| 南召县| 兴义市| 西林县| 玛沁县| 怀仁县| 辽阳县| 门源| 中西区| 牡丹江市| 南安市| 望江县|