找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Combinatorics with Applications to Mathematical Physics; A European Mathemati Anatoly M. Vershik,Yuri Yakubovich Book 2003 Sprin

[復制鏈接]
樓主: 棕櫚等
11#
發(fā)表于 2025-3-23 12:33:14 | 只看該作者
An introduction to harmonic analysis on the infinite symmetric groupThe aim of the present survey paper is to provide an accessible introduction to a new chapter of representation theory—harmonic analysis for ..
12#
發(fā)表于 2025-3-23 16:36:16 | 只看該作者
Characters of symmetric groups and free cumulantsWe investigate Kerov’s formula expressing the normalized irreducible characters of symmetric groups evaluated on a cycle, in terms of the free cumulants of the associated Young diagrams.
13#
發(fā)表于 2025-3-23 21:06:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:07:38 | 只看該作者
Advances in Intelligent and Soft Computings, their representations, characters and other attributes as group rank grows to infinity. Another kind of questions (in the spirit of infinite dimensional analysis) deal with properties of infinite dimensional analogues of classical groups. Let us discuss, for instanse, the most simple nontrivial e
15#
發(fā)表于 2025-3-24 05:38:49 | 只看該作者
16#
發(fā)表于 2025-3-24 07:01:36 | 只看該作者
Foundations of Intelligent Systemst of the evaluation modules over the algebras H .x and H..The module . depends on two partitions λ of . and . of ., and on two complex numbers.There is a canonical operator . acting in ., it corresponds to the Yang .-matrix.The algebra H. contains the symmetric group algebra ? S. as a subalgebra, an
17#
發(fā)表于 2025-3-24 13:55:55 | 只看該作者
Asymptotic Combinatorics with Applications to Mathematical Physics978-3-540-44890-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:49:25 | 只看該作者
19#
發(fā)表于 2025-3-24 21:02:18 | 只看該作者
https://doi.org/10.1007/3-540-44890-XMeasure; Probability theory; Riemann-Hilbert problem; Young diagram; characters of the representations; m
20#
發(fā)表于 2025-3-25 00:31:18 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-21 23:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石河子市| 凤城市| 宿迁市| 宾阳县| 桐柏县| 会泽县| 武穴市| 孟津县| 稻城县| 应用必备| 饶河县| 永康市| 宿松县| 光山县| 筠连县| 桂林市| 饶平县| 横峰县| 新疆| 且末县| 二连浩特市| 新田县| 寿光市| 浪卡子县| 铜鼓县| 都兰县| 吉安市| 崇文区| 松原市| 巨野县| 高邑县| 望江县| 奉新县| 漳平市| 丰都县| 兴文县| 宁陵县| 仪征市| 万载县| 肥东县| 海南省|