找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Combinatorics with Applications to Mathematical Physics; A European Mathemati Anatoly M. Vershik,Yuri Yakubovich Book 2003 Sprin

[復制鏈接]
樓主: 棕櫚等
11#
發(fā)表于 2025-3-23 12:33:14 | 只看該作者
An introduction to harmonic analysis on the infinite symmetric groupThe aim of the present survey paper is to provide an accessible introduction to a new chapter of representation theory—harmonic analysis for ..
12#
發(fā)表于 2025-3-23 16:36:16 | 只看該作者
Characters of symmetric groups and free cumulantsWe investigate Kerov’s formula expressing the normalized irreducible characters of symmetric groups evaluated on a cycle, in terms of the free cumulants of the associated Young diagrams.
13#
發(fā)表于 2025-3-23 21:06:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:07:38 | 只看該作者
Advances in Intelligent and Soft Computings, their representations, characters and other attributes as group rank grows to infinity. Another kind of questions (in the spirit of infinite dimensional analysis) deal with properties of infinite dimensional analogues of classical groups. Let us discuss, for instanse, the most simple nontrivial e
15#
發(fā)表于 2025-3-24 05:38:49 | 只看該作者
16#
發(fā)表于 2025-3-24 07:01:36 | 只看該作者
Foundations of Intelligent Systemst of the evaluation modules over the algebras H .x and H..The module . depends on two partitions λ of . and . of ., and on two complex numbers.There is a canonical operator . acting in ., it corresponds to the Yang .-matrix.The algebra H. contains the symmetric group algebra ? S. as a subalgebra, an
17#
發(fā)表于 2025-3-24 13:55:55 | 只看該作者
Asymptotic Combinatorics with Applications to Mathematical Physics978-3-540-44890-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:49:25 | 只看該作者
19#
發(fā)表于 2025-3-24 21:02:18 | 只看該作者
https://doi.org/10.1007/3-540-44890-XMeasure; Probability theory; Riemann-Hilbert problem; Young diagram; characters of the representations; m
20#
發(fā)表于 2025-3-25 00:31:18 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-21 23:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盐亭县| 宁陵县| 普兰县| 横山县| 高台县| 松溪县| 安陆市| 四会市| 霍山县| 东丰县| 灵台县| 保靖县| 呼伦贝尔市| 射洪县| 濮阳市| 霍林郭勒市| 怀来县| 美姑县| 张家港市| 铜山县| 姚安县| 衡东县| 高碑店市| 莆田市| 曲麻莱县| 平邑县| 迭部县| 平果县| 万全县| 密山市| 巴塘县| 长顺县| 比如县| 河西区| 依安县| 商都县| 监利县| 德化县| 兴国县| 琼海市| 宜川县|