找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Combinatorics with Application to Mathematical Physics; Vadim Malyshev,Anatoly Vershik Book 2002 Kluwer Academic Publishers 200

[復(fù)制鏈接]
樓主: 威風(fēng)
31#
發(fā)表于 2025-3-26 23:39:06 | 只看該作者
Representations Theory and Doubles of Yangians of Classical Lie Superalgebrass of the Yangians of Lie superalgebras of type .(.) are described in terms of Drinfel’d polynomials. A notion of the double of a Yangian and a formula for the universal R-matrix for the double of a Yangian are discussed for the Yangian of a Lie superalgebra of type .(.).
32#
發(fā)表于 2025-3-27 01:44:53 | 只看該作者
Asymptotic Combinatorics with Application to Mathematical Physics
33#
發(fā)表于 2025-3-27 08:39:32 | 只看該作者
Ziad Al Bkhetan,Dariusz Plewczynskiystem enjoys certain integrability properties which allows exact analytical calculations of some interesting physical quantities and counting of planar graphs embedded into the one dimensional line or the circle.
34#
發(fā)表于 2025-3-27 13:08:01 | 只看該作者
35#
發(fā)表于 2025-3-27 15:58:26 | 只看該作者
36#
發(fā)表于 2025-3-27 20:29:46 | 只看該作者
37#
發(fā)表于 2025-3-28 01:21:26 | 只看該作者
38#
發(fā)表于 2025-3-28 02:14:01 | 只看該作者
A New Formalism for Evidential Databasesrmation in the space of coupling constants of hierarchical fermionic model is given by the rational map. Global RG-flow in the upper half-plane of the coupling constants is described. Complex behaviour of stable RG-invariant curves leads to the non-trivial picture of critical phenomena in this model
39#
發(fā)表于 2025-3-28 10:13:24 | 只看該作者
40#
發(fā)表于 2025-3-28 10:57:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 19:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彰武县| 新营市| 梁河县| 临西县| 神木县| 遂宁市| 荣昌县| 本溪市| 平罗县| 西充县| 洛宁县| 沙洋县| 集安市| 桃江县| 明溪县| 文昌市| 绥中县| 张家口市| 阿图什市| 岳阳县| 丘北县| 罗源县| 札达县| 开鲁县| 孝感市| 阳江市| 永川市| 南江县| 屏山县| 时尚| 黄骅市| 双城市| 青浦区| 五莲县| 云南省| 隆化县| 英超| 定日县| 綦江县| 建瓯市| 登封市|