找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Chaos Expansions in Finance; Theory and Practice David Nicolay Book 2014 Springer-Verlag London 2014 ACE.Asymptotic Chaos Expans

[復(fù)制鏈接]
樓主: 爆裂
11#
發(fā)表于 2025-3-23 12:19:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:41:45 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:26 | 只看該作者
https://doi.org/10.1007/978-3-031-56940-1ctical and/or some mathematical interest. First we describe the generic ACE methodology solving the direct problem at an arbitrary order. We then apply this algorithm to compute meaningful IATM differentials, all located within the second and third layers, which we can then exploit and interpret. Ne
14#
發(fā)表于 2025-3-24 02:02:20 | 只看該作者
https://doi.org/10.1007/978-3-031-56940-1amely the SABR and FL-SV classes. We start by discussing the financial, practical and numerical issues involved. We then derive the chaos dynamics of each model, up to the third layer, stressing the technical benefits of staying model-generic and of exploiting induction. We can then express the desi
15#
發(fā)表于 2025-3-24 03:35:08 | 只看該作者
Vasiliki Efstathiou,Anthony Hunterble to other products. This is made possible because these payoffs, as well as the martingale method used to price them, are very similar. Hence the main requirement is to find the correct numeraire and pricing measure. The difference with the single underlying setting of Part I is that we are now d
16#
發(fā)表于 2025-3-24 06:47:16 | 只看該作者
17#
發(fā)表于 2025-3-24 10:57:45 | 只看該作者
18#
發(fā)表于 2025-3-24 14:50:35 | 只看該作者
19#
發(fā)表于 2025-3-24 21:27:23 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:07 | 只看該作者
David NicolayExposes some structural links, both static and dynamic, between classic stochastic instantaneous volatility models and the more recent stochastic implied volatility model class.Provides a programmable
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
板桥市| 扎囊县| 都江堰市| 怀安县| 连平县| 科技| 台安县| 南宁市| 巴彦淖尔市| 江孜县| 金塔县| 阜康市| 韶关市| 大丰市| 阳谷县| 临清市| 遵义市| 苗栗市| 临猗县| 沙湾县| 公主岭市| 温宿县| 仙居县| 城步| 溧水县| 札达县| 台湾省| 宁晋县| 浏阳市| 洱源县| 卫辉市| 姜堰市| 巨鹿县| 浑源县| 林州市| 佳木斯市| 郯城县| 洪江市| 乃东县| 大姚县| 日照市|