找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Chaos Expansions in Finance; Theory and Practice David Nicolay Book 2014 Springer-Verlag London 2014 ACE.Asymptotic Chaos Expans

[復(fù)制鏈接]
樓主: 爆裂
11#
發(fā)表于 2025-3-23 12:19:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:41:45 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:26 | 只看該作者
https://doi.org/10.1007/978-3-031-56940-1ctical and/or some mathematical interest. First we describe the generic ACE methodology solving the direct problem at an arbitrary order. We then apply this algorithm to compute meaningful IATM differentials, all located within the second and third layers, which we can then exploit and interpret. Ne
14#
發(fā)表于 2025-3-24 02:02:20 | 只看該作者
https://doi.org/10.1007/978-3-031-56940-1amely the SABR and FL-SV classes. We start by discussing the financial, practical and numerical issues involved. We then derive the chaos dynamics of each model, up to the third layer, stressing the technical benefits of staying model-generic and of exploiting induction. We can then express the desi
15#
發(fā)表于 2025-3-24 03:35:08 | 只看該作者
Vasiliki Efstathiou,Anthony Hunterble to other products. This is made possible because these payoffs, as well as the martingale method used to price them, are very similar. Hence the main requirement is to find the correct numeraire and pricing measure. The difference with the single underlying setting of Part I is that we are now d
16#
發(fā)表于 2025-3-24 06:47:16 | 只看該作者
17#
發(fā)表于 2025-3-24 10:57:45 | 只看該作者
18#
發(fā)表于 2025-3-24 14:50:35 | 只看該作者
19#
發(fā)表于 2025-3-24 21:27:23 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:07 | 只看該作者
David NicolayExposes some structural links, both static and dynamic, between classic stochastic instantaneous volatility models and the more recent stochastic implied volatility model class.Provides a programmable
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐闻县| 河曲县| 鄱阳县| 卢龙县| 栾川县| 沈丘县| 鹿邑县| 灵璧县| 安龙县| 抚松县| 互助| 达孜县| 类乌齐县| 尼木县| 阜新市| 波密县| 平潭县| 乳源| 株洲县| 定兴县| 南溪县| 石狮市| 积石山| 洪泽县| 宜良县| 阿鲁科尔沁旗| 正镶白旗| 拉萨市| 南雄市| 东城区| 分宜县| 仪陇县| 肃宁县| 启东市| 梧州市| 时尚| 卢龙县| 高邑县| 缙云县| 云浮市| 曲麻莱县|