找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Chaos Expansions in Finance; Theory and Practice David Nicolay Book 2014 Springer-Verlag London 2014 ACE.Asymptotic Chaos Expans

[復(fù)制鏈接]
樓主: 爆裂
11#
發(fā)表于 2025-3-23 12:19:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:41:45 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:26 | 只看該作者
https://doi.org/10.1007/978-3-031-56940-1ctical and/or some mathematical interest. First we describe the generic ACE methodology solving the direct problem at an arbitrary order. We then apply this algorithm to compute meaningful IATM differentials, all located within the second and third layers, which we can then exploit and interpret. Ne
14#
發(fā)表于 2025-3-24 02:02:20 | 只看該作者
https://doi.org/10.1007/978-3-031-56940-1amely the SABR and FL-SV classes. We start by discussing the financial, practical and numerical issues involved. We then derive the chaos dynamics of each model, up to the third layer, stressing the technical benefits of staying model-generic and of exploiting induction. We can then express the desi
15#
發(fā)表于 2025-3-24 03:35:08 | 只看該作者
Vasiliki Efstathiou,Anthony Hunterble to other products. This is made possible because these payoffs, as well as the martingale method used to price them, are very similar. Hence the main requirement is to find the correct numeraire and pricing measure. The difference with the single underlying setting of Part I is that we are now d
16#
發(fā)表于 2025-3-24 06:47:16 | 只看該作者
17#
發(fā)表于 2025-3-24 10:57:45 | 只看該作者
18#
發(fā)表于 2025-3-24 14:50:35 | 只看該作者
19#
發(fā)表于 2025-3-24 21:27:23 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:07 | 只看該作者
David NicolayExposes some structural links, both static and dynamic, between classic stochastic instantaneous volatility models and the more recent stochastic implied volatility model class.Provides a programmable
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林省| 舞钢市| 红安县| 揭东县| 延津县| 改则县| 黑水县| 徐州市| 章丘市| 宁晋县| 富宁县| 虹口区| 新蔡县| 沙雅县| 遂溪县| 芷江| 江山市| 肇庆市| 麻城市| 玛多县| 溧阳市| 滕州市| 泸水县| 西和县| 海安县| 竹溪县| 西乡县| 秀山| 桦南县| 茌平县| 扶风县| 克什克腾旗| 天津市| 呼伦贝尔市| 宣恩县| 达孜县| 广西| 桂平市| 北碚区| 贵阳市| 汉源县|