找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations; Grigorij Kulinich,Svitlana Kushnirenko,Yuliya Mish Book 20

[復(fù)制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 06:58:46 | 只看該作者
https://doi.org/10.1007/978-3-030-41291-3Stochastic differential equation; Asymptotic behavior of solution; Nonregular dependence on parameter;
22#
發(fā)表于 2025-3-25 10:26:23 | 只看該作者
23#
發(fā)表于 2025-3-25 15:19:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:19:47 | 只看該作者
25#
發(fā)表于 2025-3-25 22:08:30 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:39 | 只看該作者
27#
發(fā)表于 2025-3-26 07:34:46 | 只看該作者
,Asymptotic Behavior of Homogeneous Additive Functionals Defined on the Solutions of It? SDEs with Ndevoted to asymptotic behavior of the integral functionals of martingale type. The explicit form of the limiting processes for ..(.) is established in Sect. 5.6 under very non-regular dependence of .. and .. on the parameter .. This section summarizes the main results and their proofs. Section 5.7 c
28#
發(fā)表于 2025-3-26 09:46:18 | 只看該作者
Convergence of Unstable Solutions of SDEs to Homogeneous Markov Processes with Discontinuous Transiefficients of the equations leading to instability of the solutions are established in Sect. 2.1. Necessary and sufficient conditions for the weak convergence of the stochastically unstable solutions to a Brownian motion in two-layer environment are formulated and proved in Sect. 2.2. Necessary and
29#
發(fā)表于 2025-3-26 14:07:25 | 只看該作者
Asymptotic Analysis of Equations with Ergodic and Stochastically Unstable Solutions,een equations whose solutions have ergodic distribution, and equations with stochastically unstable solutions. To simplify calculations and to visualize better the influence of the drift coefficient of the equation on the asymptotic behavior of solution, we consider Eq. (.) with .. Statements about
30#
發(fā)表于 2025-3-26 16:49:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 02:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台中市| 福安市| 灵山县| 清流县| 丰镇市| 德江县| 桐梓县| 长沙市| 迭部县| 永城市| 桐庐县| 澄城县| 营口市| 册亨县| 虎林市| 绵竹市| 平湖市| 交城县| 泸水县| 如东县| 枣强县| 麻城市| 尖扎县| 漳平市| 白玉县| 漳州市| 宾川县| 鄂托克前旗| 赫章县| 凯里市| 喜德县| 萨迦县| 根河市| 阳原县| 绥芬河市| 寻乌县| 龙门县| 乌苏市| 乌兰察布市| 台中县| 大兴区|